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Abstract— In this paper, a method for current and state of
charge estimation of lithium-ion battery packs is proposed. On
the basis of a fractional 1-RQ equivalent circuit cell model, a
string model containing cells in serial connection, and a pack
model containing strings in parallel connection is built up. In
order to reduce computational costs, the model is distributed
string-wise into subsystems. An algorithm using distributed
fractional extended Kalman filters is applied to estimate the
state of charge of all cells of each string, locally. To avoid costly
measurements of numerous currents, a model based calculation
is proposed which describes how the total battery current is split
up between the strings. The algorithm is tested and validated
using measurement data.

I. INTRODUCTION

Lithium-ion batteries ensure the power supply of numer-
ous applications, such as consumer electronics and electric
vehicles [1]–[3]. One of their most important characteristic is
the state of charge (SOC). It provides information about the
remaining utilization capability of a battery-powered device.
Therefore, exact knowledge of the SOC allows to exploit the
full capacity of the battery without approaching dangerous
situations like deep discharge or overcharge [1], [4].

The SOC is defined in [5] as the amount of remaining
electric charge in the battery Q(t) in reference to its rated
electric charge Qn by

SOC(t) :=
Q(t)

Qn
. (1)

A large number of methods has evolved in order to estimate
the SOC of a lithium-ion cell, since it cannot be measured
directly [5], [6]. The two most basic approaches are Coulomb
counting (CC) and the open circuit voltage (OCV) methods.
The first one relies on precise measurement, parameterization
of loss mechanisms, and initialization [6], [7] and is therefore
only short-term accurate. The latter takes advantage of the
OCV-SOC relationship (Fig. 1), but requires long rest times
of the battery without load. Moreover, the OCV-SOC curve
often has a hysteresis property dependent on being in a
charging or discharging cycle [1], [6].

Advanced methods combine both approaches using a
battery model and a state estimation algorithm. White box
approaches such as electrochemical models are in most cases
too complex and, therefore, have to be simplified [8]. Black
box approaches like neural networks are difficult to interpret
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Fig. 1. OCV-SOC characteristics of a KOKAM cell of type SLPB834374H.

and reliant on training data [9]. A gray box technique to
describe lithium-ion battery cells make use of fractional
order models. Fractional calculus can be used to simplify
electrochemical models with a reduced number of parameters
[10]. Moreover, even simple fractional equivalent circuit
models offer a good approximation of the battery behaviour,
requiring fewer parameters than integer order models [11].
Therefore, fractional models offer a good basis for SOC
estimation and are focus of research [12]–[15].

Many methods in the literature aim to estimate the SOC of
single lithium-ion cells. However, applications like electric
vehicles require the energy of numerous battery cells. There-
fore, these cells are operated in serial and parallel as battery
packs. As listed in [16], there is a variety of estimation
approaches. Many algorithms estimate a single SOC of the
battery pack, such as [2], [17]–[20]. There, an equivalent cir-
cuit model (ECM) is used to model the pack as a whole and
an estimation based on Kalman filtering is applied. However,
as discussed in [21], it is difficult to define a meaningful
SOC for the whole pack. Furthermore, variations between
cells as a result of manufacturing tolerances, different serial
resistances, or temperature differences are inevitable [22].
These variations lead to unequal degradation rates of the cells
[23] and to an uneven current distribution of battery strings
in parallel connection as discussed in [22], [24], [25].

As a result, the SOC of each cell should be estimated
to assure safe and efficient operation [26]. One approach
to save computational costs is the estimation of an average
SOC for serially connected cells which is then individually
corrected for each cell, as proposed in [21], [22]. On the
other hand, the current of each string has to be measured
separately, which is costly and causes power losses in the
system [27], especially when facing numerous strings in
large battery packs. In [28], an iterative algorithm for the
simulation of the current distribution is presented. However,



it requires a lot of computational power. Another approach
has been given in [27] which employs a filtered terminal
voltage for SOC estimation without current measurement,
but modeling and measurement errors are not considered. In
[29], a real-time capable approach is given which estimates
the string currents as well as the SOCs of all cells in a
battery using cascaded fractional models. However, since an
unidirectional communication procedure between the strings
is used, an error propagation to all following subsystems is
likely possible. An algorithm where each subsystem receives
the same information is expected to be more robust, but
the mesh current based model of [29] is not suitable for
this. Summarizing, except [29], there exist no real-time
capable, model based methods for current estimation of
battery packs, yet. However, there exists an approach for
distributed estimation of the temperature field across a Li-
ion battery [30] showing that a distribution scheme achieves
reduced computational costs.

In this paper, we derive a fractional order battery pack
model from an equivalent circuit cell model. This pack
model is distributed string-wise into subsystems to enable an
order reduction in comparison to the pack model. For each
subsystem a fractional extended Kalman filter is employed
for online and local SOC estimation of all cells in the string.
Due to the reduced order, and based on the fact that all
string models are structurally identical, this approach pro-
vides scalability and reduced computational costs. Applying
Kirchhoff’s law, a model based calculation of the string
currents is introduced. This calculation is used to enable
a string current estimation which requires measurements of
the total current or of the total voltage, only. Accordingly,
string current measurements are not needed. Depending on
if the total current or the total voltage is measured, an
information exchange between all subsystems is required or
not. Although the proposed approach is derived on the basis
of fractional order models in this paper, it is also applicable
to integer-order models.

II. FRACTIONAL ORDER SYSTEMS

There are several definitions of fractional order deriva-
tives. One of the most commonly used is the definition of
Grünwald-Letnikov. A discrete-time approximation of the
derivative of fractional order of a function f is given in [31],
[32], here generalized for multidimensional functions by

0Dαkt f (t) ≈ T−1αk
k+1∑
j=0

(−1)jΥαk,jf ((k + 1− j)T ) (2)

where 0 is the lower limit of the differentiation. The individ-
ual fractional derivatives and orders, respectively, are denoted
by 0Dαkt f(t) :=

[
0D

α1,k

t f1 (t) , . . . , 0D
αn,k
t fn (t)

]T
with an

extension of the binomial coefficients

Υαk,j := diag

{(
α1,k

j

)
, . . . ,

(
αn,k
j

)}
(3)

and the weighted sampling times

Tαk := diag {Tα1,k , . . . , Tαn,k} . (4)

A. Short Memory Principle

In order to evaluate the derivative at time t = kT in (2),
more and more past function values of f are needed as time
increases. However, the elements of Υαk,j converge to zero
for k →∞, making older values of f less important for the
calculation of the derivative. Therefore, only a fixed number
L of past values is considered which is called short memory
principle (SMP) [31], [33].

B. Initialization

A fractional derivative is not a local operator and, there-
fore, dependent on its history [34]. Hence, an initialization
function has to be taken into account. It describes the
influence of the history of f(t) before the lower limit t = 0
of (2) on the function at the current time t. The influence of
an initialization function for state estimation of battery cells
with a fractional extended Kalman filter was examined in
[15]. The impact of the uncertainty of the filter by its error
covariance matrix is larger than the influence of an initializa-
tion function. In addition, the initialization function is usually
unknown in practice and it also loses influence during the
estimation process due to the SMP and progressing time as
discussed in II-A. Therefore, initialization functions will be
neglected in this paper.

C. Fractional Order State Space Representation

A discrete-time fractional order state space model is given
in [29] by

xk+1 = fk(xk,uk)−
k+1∑
j=1

(−1)jΥαk,jxk+1−j + vk (5)

yk = gk(xk,uk) +wk. (6)

where xk ∈ Rn is the state, uk ∈ Rp the input, vk ∈
Rn the system noise, yk ∈ Rq the output, and wk ∈ Rq
the measurement noise [15], [31]. The fractional derivatives
of orders αk are implicitly contained in Υαk,j which is
induced by the Grünwald-Letnikov definition in (2). Note
that this model is not a state space model in its classical
sense, since the system behaviour is additionally dependent
on past states as discussed in II-A, II-B, and further in [34].
Therefore, it is commonly called pseudo state space model.
For simplicity reasons, the usual description as state space
model will nevertheless be used in the following.

III. BATTERY MODEL

A. Model of a Battery Cell

Fractional order battery models can be deduced from
a physical analysis of the cell, making their parameters
interpretable [35]. Furthermore, they are able to provide
better approximations of the battery impedance with the same
or a lower number of parameters than integer order models
[15]. A simple but effective way of modeling battery cells is
a 1-RQ equivalent circuit model (Fig. 2). The model consists
of an internal resistance Ri, a RQ circuit with resistance R
and a fractional capacitor Q of order α, and a nonlinear
capacitance C. The voltage-charge characteristic of C is
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Fig. 2. 1-RQ equivalent circuit model of a battery cell.

interpolated by a polynomial and described by the averaged
OCV-SOC relations of Fig. 1, since the hysteresis can be
neglected for many mid and high temperature applications
[6]. Since the impedance of the cell is dependent on the
SOC, all parameters Ri, R,Q and α of the model are also
dependent on the SOC. They are interpolated using a shape-
preserving piecewise cubic function. E.g., the order α varies
between 0.5 and 0.75 subject to the SOC. The model of the
single cell (upper index c) is given in [15] by

xck+1 :=

(
SOCk+1

uRQ,k+1

)
=

(
100Tηik
Qn

Tα

Q

(
ik − uRQ,k

R

))

−
k+1∑
j=1

(−1)
j
Υα,j

(
SOCk+1−j
uRQ,k+1−j

)
+

(
vSOC,k
vRQ,k

)
(7)

=: f ck(xck, ik) + vck (8)
yck := OCV + uRQ,k +Riik + wk (9)

=: gck(xck, ik) + wck (10)

where the cell current ik is the input, uRQ,k is the voltage of
the RQ circuit pursuant to Fig. 2, η is the coulomb efficiency,
T is the sampling time, the states of the cell are xck, the cell
voltage yck is the output, and vck := (vSOC,k, vRQ,k)> and
wck := wk are additive white gaussian noises which describe
model uncertainties and measurement noise, respectively.

B. Model of a Battery String

A serial connection of S single cells is called a battery
string. As the cells are serially connected, the cell currents
are identical in every cell. The model of a single string (upper
index s) results cell-wise as

xsk+1 :=

x
c
1,k+1

...
xcS,k+1

 =

f
c
1,k(xc1,k, ik)

...
f cS,k(xcS,k, ik)

+

v
c
1,k
...

vcS,k


(11)

=: fsk(xsk, ik) + vsk (12)

ysk :=

y
c
1,k+1

...
ycS,k+1

 =

g
c
1,k(xc1,k, ik)

...
gcS,k(xcS,k, ik)

+

w
c
1,k
...

wcS,k


(13)

=: gsk(xsk, ik) +ws
k (14)

with vsk := (vc1,k, . . . ,v
c
S,k)> and ws

k := (wc1,k, . . . , w
c
S,k)>

as abbreviations for the noises. The functions fsk(xsk, ik) and
gsk(xsk, ik) denote the system and output equations of the
whole string. Note that fs comprises the dynamics of each
cell (7) which are of varying fractional orders.

C. Model of a Battery Pack

In order to model a battery pack, P parallel strings, with
S cells per string are assumed (Fig. 3). The resulting state
vector xbk is assembled string-wise. The output vector ybk is
arranged in the same way and the input vector is built up
of the string currents ibk := (i1,k, . . . , iP,k)>. The result is a
state space model of the entire battery pack (upper index b),
identical to [29] as

xbk+1 =

x
s
1,k+1

...
xsP,k+1

 =

 f
s
1,k(xs1,k, i1,k)

...
fsP,k(xsP,k, iP,k)

+

v
s
1,k
...

vsP,k


(15)

=: f bk(xbk, i
b
k) + vbk (16)

ybk =

y
s
1,k
...

ysP,k

 =

 g
s
1,k(xs1,k, i1,k)

...
gsP,k(xsP,k, iP,k)

+

w
s
1,k
...

ws
P,k

 (17)

=: gbk(xbk, i
b
k) +wb

k (18)

with vbk := (vs1,k, . . . ,v
s
P,k)> and wb

k :=

(ws
1,k, . . . ,w

s
P,k)> being abbreviations for the noises.

Note that the functions f c,fs and f b include implicitly the
sum induced by the Grünwald-Letnikov definition and are,
therefore, of fractional order. The equations (7) - (18) are
of the structure of (5) and (6), respectively. To avoid all
possibilities of confusion, the inputs uk of (5) and (6) are
no voltages but the string currents.

D. Model Based Current Calculation

As stated in the introduction, current measurements of
each string in large battery packs can be costly and cause
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Fig. 3. Model of the battery pack.



power losses. Therefore, the distribution of the currents is
calculated by a model based approach in this paper which is
described in this section. Since the approach only considers
algebraic equations, the time-index k is omitted in this
section for increased readability.

Theorem 1 (Current Distribution). The current distribution
can be calculated as

ip = it
Ri,t
Ri,p

+
Ri,t
Ri,p

(
P∑
a=1

um,a − um,p
Ri,a

)
(19)

=
ut − um,p
Ri,p

, (20)

whereby the indices (∗)p and (∗)a refer to the variables of
the p-th or a-th string, respectively. The index (∗)t refers to
the total battery pack. The variable

Ri,p :=

S∑
s=1

Ri,p,s +Rc,p (21)

describes the sum of the inner resistances of all cells of string
p, also considering additional wire and connector resistances
Rc,p. The index (∗)p,s refers to the s-th cell in the p-th string.
The variable

Ri,t :=

(
P∑
a=1

1

Ri,a

)−1
(22)

can be interpreted as total resistance, and

it :=

P∑
a=1

ia (23)

is the total battery current according to Kirchhoff’s current
law. The auxiliary voltages

um,p :=

S∑
s=1

(OCVp,s + uRQ,p,s) (24)

describe the sum of OCV and uRQ for the cells of a single
string p.

Proof. Applying Kirchhoff’s voltage law, the total voltage
ut equals the voltage of each string up

ut = up ∀p. (25)

The voltage of a string is the sum of the voltages of all S
cells of the string as well as the voltage over the resistance
Rc,p

up =

S∑
s=1

(OCVp,s + uRQ,p,s +Ri,p,sip) +Rc,pip. (26)

Using (21), (24), and (25), equation (26) is simplified to

ut = um,p + ipRi,p ∀p. (27)

Solving (27) for ip, and inserting in (23) results in

it =

P∑
a=1

ia =

P∑
a=1

ut − um,a
Ri,a

= ut

P∑
a=1

1

Ri,a
−

P∑
a=1

um,a
Ri,a

.

(28)

Rearranging the equation for ut and using (22) yields

ut =

(
it +

P∑
a=1

um,a
Ri,a

)
Ri,t. (29)

With (29), equation (27) can be reformulated

ip =
ut − um,p
Ri,p

(30)

= it
Ri,t
Ri,p

+
Ri,t
Ri,p

(
P∑
a=1

um,a − um,p
Ri,a

)
. (31)

which leads to (19) and (20) and concludes the proof. Hereby,
a is the index of summation over all strings and p is used to
describe which string is considered.

As a result, it can be seen that the string current calculation
in (19) is split into two parts. On the one hand, the total
current is divided into the strings by means of the ratio
between total resistance and resistance of the particular
string p. On the other hand, there are compensating currents
between the strings, dependent on the difference between the
state-related voltages OCV and uRQ of string p and all other
strings. These compensating currents are also dependent on
the ratio between total resistance and resistance of string p.

Alternatively, the string currents can be calculated using
(20) which requires knowledge about the total voltage instead
of the total current. An advantage of this method is that the
current of string p is only dependent on the resistances and
the state-related voltages OCV and uRQ of its own string
p. Hence, for the calculation of the current in string p no
information about other strings are needed, in contrast to the
previous case.

We assume in the rest of the paper that either the total
voltage or the total current of the battery pack is being
measured.

E. Distribution of the Battery Pack Model

The pack model is divided into a coupled set of subsystems
in this paper to achieve an order reduction. Since the current
as input variable is equal within one string, a string-wise
distribution of the pack (see (11) - (14)) is preferable.
Accordingly, states, outputs, and input of each subsystem
correspond to states, outputs, and input of one string. The
same applies to the system and output equations, and the
noises. Therefore, the order of the subsystem in comparison
to the total battery pack model is reduced by 2·S/(2·S ·P ) =
1/P . The complexity of a centralized Kalman filter algorithm
O((2 · S · P )3) is hence reduced to O((2 · S)3) for the
distributed Kalman filters [30]. Note that other choices for
the subsystems are also possible, e.g., cell-wise subsystems.

IV. ESTIMATION PROCEDURE

In this section, the model based SOC and current estima-
tion procedure for the battery pack is presented. A distributed
fractional extended Kalman filter (DFEKF) which is based
on [15], [36] is used for local estimation of each subsystem.

Case 1: (Total current is measured): For the model based
string current calculation of (19), information from other



subsystems about their states and resistances is required.
Since the true values are not available, the subsystems have
to exchange their estimations in order to calculate the string
currents. Furthermore, an all-to-all connection between the
subsystems is required, because the current calculation needs
information from all subsystems as seen in (19). Such an
information exchange can be implemented by a central fusion
node as shown in Fig. 4, or separately in each subsystem
for increased robustness. Because the dependency between
the subsystems is already included in the current distribution
model, the fusion step of a distributed state estimation
algorithm as, e.g., in [36] can be replaced by the current
calculation (19).

Case 2: (Total voltage is measured): For a current calcula-
tion as in (20), an information exchange between subsystems
is not necessary. Only the measured total voltage must be
available at all subsystems.

Both cases, (19) and (20) are algebraic equations, because
ip,k is dependent on variables of the same time-step k, only.
The corrected states x̂a,k|k (̂ia,k) are dependent on the current
of the same time-step k and, therefore, can not be used for
the current calculation. Hence, for the current estimation, the
predicted states x̂a,k|k−1(̂ia,k−1) must be used, because they
depend only on the current of the previous time-step k−1. As
a result, a reasonable sequence for the estimation procedure
is to calculate the current estimation and the state correction
for the current time-step k first, and then the state prediction
for the next time-step k + 1, as shown in Fig. 4 for case 1.
It follows:

Current estimation (case 1):

îp,k = it,k
Ri,t,k
Ri,p,k

+
Ri,t,k
Ri,p,k

(
P∑
a=1

ûm,a,k|k−1 − ûm,p,k|k−1
Ri,a,k

)
(32)

or

x̂s
1,k|k−1

P s
1,k|k−1

x̂s
P,k|k−1

P s
P,k|k−1

x̂s
1,k|k

P s
1,k|k

î1,k

x̂s
P,k|k

P s
P,k|k

îP,k

ys
1,k

ys
P,k

it,k

k

PredictionCurrent est. Correction

k + 1

x̂s
1,k+1|k

P s
1,k+1|k

x̂s
P,k+1|k

P s
P,k+1|k

Subsystem 1

Subsystem P

Prediction

Fig. 4. Processing order and communication between the Kalman filters
using a central node (brown) for data fusion in case of using the total current
measurement (19). Measurements are highlighted in blue.

Current estimation (case 2):

îp,k =
ut,k − ûm,p,k|k−1

Ri,p,k
(33)

State correction:

Ks
p,k = P s

p,k|k−1G
s,>
p,k

·
(
Gs
p,kP

s
p,k|k−1G

s,>
p,k +Rs

p,k

)−1
(34)

x̂sp,k|k = x̂sp,k|k−1 +Ks
p,k

[
ysp,k − gsp,k

(
x̂sp,k|k−1, îp,k

)]
(35)

P s
p,k|k =

(
I −Ks

p,kG
s
p,k

)
P s
p,k|k−1

(
I −Ks

p,kG
s
p,k

)>
+Ks

p,kR
s
p,kK

s,>
p,k (36)

State prediction:

x̂sp,k+1|k = fsp,k(x̂sp,k|k, îp,k) (37)

P s
p,k+1|k =

(
F sp,k + Υs

p,αk,1

)
P s
p,k|k

(
F s,>p,k + Υs,>

p,αk,1

)
+Qs

p,k +

L+1∑
j=2

Υs
p,αk,j

P s
p,k+1−j|k+1−jΥ

s,>
p,αk,j

(38)

with the auxiliary voltage

ûm,a,k|k−1 :=

S∑
s=1

OCV(SÔC)a,s,k|k−1 + ûRQ,a,s,k|k−1

similar to (24) but using the estimated states SÔC and
ûRQ. Hereby, îp,k is the estimated current, Ks

p,k is the
Kalman gain, P s

p,k|k−1 is the predicted and P s
p,k|k is the

corrected estimation error covariance matrix, x̂sp,k|k−1 are the
predicted and x̂sp,k|k are the corrected states, I is the identity
matrix, Rs

p,k = E{ws
p,kw

s,>
p,k } is the measurement noise

covariance matrix and Qs
p,k = E{vsp,kv

s,>
p,k } is the system

noise covariance matrix, and Υs
p,αk,j

is the extension of the
binomial coefficient, for subsystem p. The nonlinearities of
the system are treated by linearization. The required Jacobian
matrices of the system and the output function are given by

F sp,k =

[
∂fsp,k(xsp,k, ip,k)

∂xsp,k

]
xsp,k=x̂

s
p,k|k,ip,k=îp,k

(39)

Gs
p,k =

[
∂gsp,k(xsp,k, ip,k)

∂xsp,k

]
xsp,k=x̂

s
p,k|k−1

,ip,k=îp,k

. (40)

As a result, the algorithm consists of two parts which co-
operate with each other: the state estimation and the current
estimation. This method needs the measurement of the cell
voltages as well as the total voltage or the total current, only.
Up to P − 1 Sensors can be saved, because measurements
of the single string currents are not necessary. Furthermore,
due to the reduced order of the local string models and
the local Kalman filtering, the complexity is decreased in
comparison to a direct estimation of the pack model as
discussed. Moreover, this approach is scalable because the
battery pack and the distributed filters can be easily extended.



V. MEASUREMENT SETUP

For the validation of the estimation algorithm and to eval-
uate the current estimation, an experiment has been set up.
The setup contains three battery strings, with three KOKAM
SLPB834374H lithium-ion cells per string. All individual
cell voltages yck as well as the total voltage ut,k are measured
using an A/D-board DS2004 from dSPACE. For control and
measurement of the total battery current it,k which is shown
in Fig. 5, a BOP20-20M current source from Kepco is used.
For comparison, each string contains also a highly accurate
34410A multimeter from Keysight Technologies to validate
the estimated string currents. Since the currents im,p are
measured under laboratory conditions, they are further used
as SOC-reference by a current integration. The additional
resistances Rc,p are assumed to be constant over time, but
differ in each string and have been identified to

Rc,1 = 540 mΩ, Rc,2 = 610 mΩ, Rc,3 = 650 mΩ. (41)

The initial states of the cells have been determined using
voltage measurements of each cell after a rest time of t =
1000 s and before wiring them to a pack. After the rest time
it can be assumed that ucRQ,p,s ≈ 0 V ∀p, s, so that the initial
SOCs can be determined using the OCV-SOC relation. The
determined initial states are

xs1,0 = (95.3 % 0 V 85.5 % 0 V 74.9 % 0 V)
>
,

xs2,0 = (90.5 % 0 V 80.8 % 0 V 69.4 % 0 V)
>
,

xs3,0 = (85.6 % 0 V 76.1 % 0 V 64.6 % 0 V)
>
.

Although, the cells may have different parameters in practice,
it can not be expected that exact information about all cells is
available. Therefore, the parameters Ri, R,Q, α,Qn and the
OCV-SOC relation have been identified only for one of the
cells of the battery pack. Accordingly, we use the identified
relationships between parameters and their particular SOC
for all cells of the model.

VI. ESTIMATION RESULTS

The measurements from Sec. V were used to validate the
proposed algorithm. Based on the results of [15] and [29], we
use a sampling time T = 0.1 s, a memory length L = 250,
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Fig. 5. Input current it,k for the measurement setup.

and covariance matrices

Qs
p,k = diag

{
10−5 %2, 5 · 10−4 V2, 10−5 %2,

5 · 10−4 V2, 10−5 %2, 5 · 10−4 V2
}
∀p, k (42)

Rs
p,k = diag

{
2.8391 · 10−8 V2, 2.8391 · 10−8 V2,

2.8391 · 10−8 V2
}
∀p, k (43)

P s
p,0 = diag

{
100 %2, 100 V2, 100 %2,

100 V2, 100 %2, 100 V2
}
∀p. (44)

The initial states of the filter algorithm have been set to

x̂s1,0 = (93.3 % 0 V 88.5 % 0 V 79.9 % 0 V)
>
,

x̂s2,0 = (93.5 % 0 V 77.8 % 0 V 73.4 % 0 V)
>
,

x̂s3,0 = (81.6 % 0 V 81.1 % 0 V 63.6 % 0 V)
>

which have some randomly chosen deviations from the true
states. The initial states are in practice unknown, so these
deviations are used to check if the filters are able to handle
initialization errors. The results of the experiment using case
1 (measurement of total current, communication between all
subsystems) are shown in Tab. I and in Figs. 6 - 10. The root-
mean-square error (RMSE) of the estimated currents is in the
range of a few mA in this experiment as shown in Tab. I. The
maximum absolute error (MAE) of the estimated currents is

TABLE I
SOC AND CURRENT ESTIMATION ERRORS.

String 1 SOC Cell 1 SOC Cell 2 SOC Cell 3 Current
RMSE 1.7434% 1.5595% 1.7737% 0.0126A

MAE 2.6492% 2.9997% 4.9994% 1.4474A

String 2 SOC Cell 1 SOC Cell 2 SOC Cell 3 Current
RMSE 0.5913% 2.2826% 1.5678% 0.0095A

MAE 2.9996% 3.4921% 3.9997% 1.3181A

String 3 SOC Cell 1 SOC Cell 2 SOC Cell 3 Current
RMSE 1.1245% 1.1602% 2.0876% 0.0094A

MAE 3.9996% 4.9994% 3.3015% 1.2391A
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Fig. 6. Comparison of estimated string currents îp and measured string
currents im,p.
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Fig. 7. Delay between measured total current it and measured string
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Fig. 8. SOCs estimated by the DFEKF (KF) of string 1 and SOCs
calculated by a current integration (CI) of measured current im,1.

larger, but only due to different jitter periods and time delays
of the measurement equipment around the current steps of it
and therefore, they are not informative. An exemplary excerpt
of a current step is shown in Fig. 7.

Fig. 6 shows the estimated string currents îp by the
DFEKF as well as the measured currents im,p by the
Keysight multimeters. It can be seen that there are only small
differences between these currents. The remaining errors are
induced by measurement noises of the total current and the
cell voltages. As a result, the proposed current estimation
procedure can compete with the highly accurate multimeters.

In Figs. 8 and 9 the estimated SOCs of the DFEKF
are shown for all cells of strings 1 and 2 as well as
the corresponding SOCs which are calculated by a current
integration using the measured branch currents im,p. Fig. 10,
however, shows exemplary the error between the estimated
SOCs and the SOCs determined by the current integration
of string 3. The RMSE and MAE of all cells are also shown
in Tab. I. The SOC estimation error is at all times for all
strings smaller than 5 %. For most of the cells the MAE is
equal to the initial SOC error. Only three cells exceed it. The
results match with the conclusions for single-cell estimation
of [15] which stated that the largest errors occur in the flat
region of the OCV-SOC curve. The states can be estimated
accurately even though the filters are not correctly initialized
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Fig. 9. SOCs estimated by the DFEKF (KF) of string 2 and SOCs
calculated by a current integration (CI) of measured current im,2.
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Fig. 10. Estimation error between estimated SOCs by the DFEKF of string
3 and SOCs calculated by a current integration of measured current im,3.

and cell-to-cell parameter variations have been disregarded.
We also proceeded the proposed method for case 2 (mea-

surement of total voltage, no communication). The results
are not illustrated because they are nearly identical to case
1 except some very small variations due to slightly different
measurement noises. Hence, the second case provides identi-
cal results, although communication between the subsystems
is not needed.

VII. SUMMARY AND CONCLUSION

In this paper, a distributed fractional extended Kalman
filter has been proposed for state of charge and current
estimation of lithium-ion battery packs. Based on a fractional
1-RQ model of a battery cell, the model of a battery pack
has been derived. In order to minimize measuring effort, two
cases for a model based calculation of the current distribution
has been proposed and used for string current estimation.
Since the only dependency between the battery strings is
described by the current calculation model, a string-wise
distribution of the system into subsystems could be enabled.
Each subsystem estimates only the states of its own string
and is therefore of reduced order compared to the battery



pack. Measurement results of a battery pack consisting of
three strings with three cells, each, show that the proposed
method is suitable for SOC as well as current estimations.
Depending on available measurements, the subsystems do
not need to communicate with each other (case 2).

In contrast to existing literature, the proposed approach is
capable of a model based estimation of the string currents
which attains reduced measurement effort. Apart from accu-
rate estimation results, an important feature of the presented
approach is its versatility. That is, the distribution of the
total battery pack is not mandatory for the current estimation
procedure, but achieves advantages like increased scalability
and smaller subsystems with reduced order. Furthermore, the
cell or pack model can be exchanged straightforwardly using
more complex models, or alternatively, using simple integer-
order models with α = 1 and omitting fractional calculus.
Future works are the extension of the algorithm by an online
identification of the battery resistances.
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