190 research outputs found

    Piezoelectric and optical setup to measure an electrical field: Application to the longitudinal near-field generated by a tapered coax

    Full text link
    We propose a new setup to measure an electrical field in one direction. This setup is made of a piezoelectric sintered lead zinconate titanate film and an optical interferometric probe. We used this setup to investigate how the shape of the extremity of a coaxial cable influences the longitudinal electrical near-field generated by it. For this application, we designed our setup to have a spatial resolution of 100 um in the direction of the electrical field. Simulations and experiments are presented

    Materials Characterization Using High-Frequency Atomic Force Microscopy and Friction Force Microscopy

    Get PDF
    During the last decade, Atomic Force Microscopy (AFM) has been widely used to image the topography of various surfaces with corrugations down to the atomic scale [1,2]. Since then, development of new techniques based on AFM has been conducted to evaluate physical, chemical or mechanical surface properties [3]. We describe the use of near-field acoustic microscopy, based on AFM and hereafter referred to as Acoustic Microscopy by Atomic Force Microscopy (AFAM), as it has been developed earlier [4]. The relevance of this new scanning probe microscopy for high-resolution nondestructive testing and evaluation purposes is pointed out. It is shown that AFAM is capable of measuring elasticity on surfaces with a spatial resolution of less than 100 nm. Subsurface elastic properties and subsurface microdefect characterization can be performed by this technique. The high frequency Friction Force Microscopy (FFM) image, hereafter called Acoustic Friction Force Micropscopy (AFFM), reveals information different from the conventionally taken friction force image. We describe experimental and theoretical aspects of high-frequency atomic force and friction force microscopy

    ULTRA-LOCAL TEMPERATURE MAPPING WITH AN INTRINSIC THERMOCOUPLE

    Get PDF
    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920)International audienceWe report on a set-up derived from an Electrostatic Force Microscope (EFM) allowing us to probe temperature with a high spatial resolution. The system uses the well-known Seebeck effect through an intrinsic thermocouple made from an EFM conducting tip put in contact with a conducting sample. The contact radius between tip and sample is currently estimated to be in the 50 to 100 nm range depending on the elastic or the plastic deformation. The contact area can be assimilated to the electrical and thermal contact areas. In those conditions, the issue of heat conduction in air is solved. The thermal measurement is related to the Seebeck junction effect : it will therefore not be sensitive to buried materials or impurities

    Temperature Measurement of Microsystems by Scanning Thermal Microscopy

    Get PDF
    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920)International audienceSurface temperature measurements were performed with a Scanning Thermal Microscope. We aim at proving an eventual sub-micrometric resolution of this metrology when using a wollaston wire probe of micrometric size. A dedicated CMOS device was designed with arrays of lines 0.35mm in size with 0.8 mm and 10mm periods. Integrated Circuits with or without a passivition layer were tested. To enhance sensitivity, the IC heat source was excited with an AC current. We show that the passivation layer spreads heat so that the lines are not distinguishable. Removing this layer allows us to distinguish the lines in the case of the 10mm period

    Characterization of Films with Thickness Less than 10 nm by Sensitivity-Enhanced Atomic Force Acoustic Microscopy

    Get PDF
    We present a method for characterizing ultrathin films using sensitivity-enhanced atomic force acoustic microscopy, where a concentrated-mass cantilever having a flat tip was used as a sensitive oscillator. Evaluation was aimed at 6-nm-thick and 10-nm-thick diamond-like carbon (DLC) films deposited, using different methods, on a hard disk for the effective Young's modulus defined as E/(1 - ν2), where E is the Young's modulus, and ν is the Poisson's ratio. The resonant frequency of the cantilever was affected not only by the film's elasticity but also by the substrate even at an indentation depth of about 0.6 nm. The substrate effect was removed by employing a theoretical formula on the indentation of a layered half-space, together with a hard disk without DLC coating. The moduli of the 6-nm-thick and 10-nm-thick DLC films were 392 and 345 GPa, respectively. The error analysis showed the standard deviation less than 5% in the moduli

    Policy challenges for the pediatric rheumatology workforce: Part II. Health care system delivery and workforce supply

    Get PDF
    The United States pediatric population with chronic health conditions is expanding. Currently, this demographic comprises 12-18% of the American child and youth population. Affected children often receive fragmented, uncoordinated care. Overall, the American health care delivery system produces modest outcomes for this population. Poor, uninsured and minority children may be at increased risk for inferior coordination of services. Further, the United States health care delivery system is primarily organized for the diagnosis and treatment of acute conditions. For pediatric patients with chronic health conditions, the typical acute problem-oriented visit actually serves as a barrier to care. The biomedical model of patient education prevails, characterized by unilateral transfer of medical information. However, the evidence basis for improvement in disease outcomes supports the use of the chronic care model, initially proposed by Dr. Edward Wagner. Six inter-related elements distinguish the success of the chronic care model, which include self-management support and care coordination by a prepared, proactive team
    corecore