389 research outputs found

    Levantamento de custos na implantação de um sistema de produção apícola e caracterização físico-química do mel de abelhas africanizadas Apis mellifera L. em Cocal-PI.

    Get PDF
    A avaliação físico-química do mel torna-se importante para a determinação da qualidade do produto, além disso, o conhecimento acerca dos custos e investimento no sistema de produção apícola são essenciais para melhorias na tomada de decisão. Nesse sentido, objetivou-se fazer um levantamento econômico do sistema apícola e analisar a composição físico-química dos méis produzidos pelas abelhas africanizadas Apis mellifera no munícipio de Cocal-PI

    Evidence of illegitimate recombination between two pasteurellaceae plasmids resulting in a novel multi-resistance replicon, pM3362MDR, in Actinobacillus pleuropneumoniae

    Get PDF
    Evidence of plasmids carrying the tetracycline resistance gene, tet(B), was found in the previously reported whole genome sequences of 14 United Kingdom, and 4 Brazilian, isolates of Actinobacillus pleuropneumoniae. Isolation and sequencing of selected plasmids, combined with comparative sequence analysis, indicated that the four Brazilian isolates all harbor plasmids that are nearly identical to pB1001, a plasmid previously found in Pasteurella multocida isolates from Spain. Of the United Kingdom isolates, 13/14 harbor plasmids that are (almost) identical to pTetHS016 from Haemophilus parasuis. The remaining United Kingdom isolate, MIDG3362, harbors a 12666 bp plasmid that shares extensive regions of similarity with pOV from P. multocida (which carries bla ROB−1 , sul2, and strAB genes), as well as with pTetHS016. The newly identified multi-resistance plasmid, pM3362MDR, appears to have arisen through illegitimate recombination of pTetHS016 into the stop codon of the truncated strB gene in a pOV-like plasmid. All of the tet(B)-carrying plasmids studied were capable of replicating in Escherichia coli, and predicted origins of replication were identified. A putative origin of transfer (oriT) sequence with similar secondary structure and a nic-site almost identical to that of RP4 was also identified in these plasmids, however, attempts to mobilize them from an RP4-encoding E. coli donor strain were not successful, indicating that specific conjugation machinery may be required

    Inflight proton activation and damage on a CdTe detection plane

    Get PDF
    Future high-energy space telescope missions require further analysis of orbital environment induced activation and radiation damage on main instruments. A scientific satellite is exposed to the charged particles harsh environment, mainly geomagnetically trapped protons (up to ∼300 MeV) that interact with the payload materials, generating nuclear activation background noise within instruments' operational energy range and causing radiation damage in detector material. As a consequence, instruments' performances deteriorate during the mission time-frame. In order to optimize inflight operational performances of future CdTe high-energy telescope detection planes under orbital radiation environment, we measured and analyzed the effects generated by protons on CdTe ACRORAD detectors with 2.56 cm2 sensitive area and 2 mm thickness. To carry-out this study, several sets of measurements were performed under a ∼14 MeV cyclotron proton beam. Nuclear activation radionuclides' identification was performed. Estimation of activation background generated by short-lived radioisotopes during one day was less than ∼1.3 ×10-5 counts cm-2 s-1 keV-1 up to 800 keV. A noticeable gamma-rays energy resolution degradation was registered (∼60% @ 122 keV, ∼14% @ 511 and ∼2.2% @ 1275 keV) after an accumulated proton fluence of 4.5 ×1010 protons cm-2, equivalent to ∼22 years in-orbit fluence. One year later, the energy resolution of the irradiated prototype showed a good level of performancerecovery

    Electronic excitations in molecular solids:bridging theory and experiment

    Get PDF
    As the spatial and temporal resolution accessible to experiment and theory converge, computational chemistry is an increasingly powerful tool for modelling and interpreting spectroscopic data. However, the study of molecular processes, in particular those related to electronic excitations (e.g. photochemistry), frequently pushes quantum-chemical techniques to their limit. The disparity in the level of theory accessible to periodic and molecular calculations presents a significant challenge when modelling molecular crystals, since accurate calculations require a high level of theory to describe the molecular species, but must also take into account the influence of the crystalline environment on their properties. In this article, we briefly review the different classes of quantum-chemical techniques, and present an overview of methods that account for environmental influences with varying levels of approximation. Using a combination of solid-state and molecular calculations, we quantitatively evaluate the performance of implicit-solvent models for the [Ni(Et4dien)(η2-O,ON)(η1-NO2)] linkage-isomer system as a test case. We focus particularly on the accurate reproduction of the energetics of the isomerisation, and on predicting spectroscopic properties to compare with experimental results. This work illustrates how the synergy between periodic and molecular calculations can be exploited for the study of molecular crystals, and forms a basis for the investigation of more challenging phenomena, such as excited-state dynamics, and for further methodological developments

    Guia de implantação do modelo corporativo de processos de software da Embrapa (MCPSE).

    Get PDF
    Este Guia reúne informações para que os processos de software sejam adotados corporativamente, conforme definido no modelo corporativo de processos de software da Embrapa (MCPSE), garantindo a qualidade dos produtos gerados pelas equipes dos projetos de desenvolvimento de software da Empresa.bitstream/item/100418/1/DOC-400.pd

    The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview

    Get PDF
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and a middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 500-1100 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: 1) the policy assumptions, 2) the socio-economic narrative, and 3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 differs in our analysis thus by about a factor of three across the SSP scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectorial extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6)

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore