23 research outputs found

    Conserved but flexible modularity in the zebrafish skull: implications for craniofacial evolvability

    Get PDF
    Morphological variation is the outward manifestation of development and provides fodder for adaptive evolution. Because of this contingency, evolution is often thought to be biased by developmental processes and functional interactions among structures, which are statistically detectable through forms of covariance among traits. This can take the form of substructures of integrated traits, termed modules, which together comprise patterns of variational modularity. While modularity is essential to an understanding of evolutionary potential, biologists currently have little understanding of its genetic basis and its temporal dynamics over generations. To address these open questions, we compared patterns of craniofacial modularity among laboratory strains, defined mutant lines and a wild population of zebrafish ( ). Our findings suggest that relatively simple genetic changes can have profound effects on covariance, without greatly affecting craniofacial shape. Moreover, we show that instead of completely deconstructing the covariance structure among sets of traits, mutations cause shifts among seemingly latent patterns of modularity suggesting that the skull may be predisposed towards a limited number of phenotypes. This new insight may serve to greatly increase the evolvability of a population by providing a range of 'preset' patterns of modularity that can appear readily and allow for rapid evolution

    Reduced exploration capacity despite brain volume increase in warm-acclimated common minnow

    Get PDF
    While evidence suggests that warming may impact cognition of ectotherms, the underlying mechanisms remain poorly understood. A possible but rarely considered mechanism is that the metabolic response of ectotherms to warming is associated with changes in brain morphology and function. Here, we compared aerobic metabolism, brain volume, boldness and accuracy of maze solving of common minnows (Phoxinus phoxinus) acclimated for 8 months to either their current optimal natural (14°C) or warm (20°C) water temperature. Metabolic rates indicated increased energy expenditure in warm-acclimated fish, but also at least partial thermal compensation as warm-acclimated fish maintained high aerobic scope. Warm-acclimated fish had larger brains than cool-acclimated fish. The volume of the dorsal medulla relative to the overall brain size was larger in warm- than in cool-acclimated fish, but the proportion of other brain regions did not differ between the temperature treatments. Warm-acclimated fish did not differ in boldness but made more errors than cool-acclimated fish in exploring the maze across four trials. Inter-individual differences in the number of exploration errors were repeatable across the four trials of the maze test. Our findings suggest that in warm environments, maintaining a high aerobic scope, which is important for the performance of physically demanding tasks, can come at the cost of changes in brain morphology and impairment of the capacity to explore novel environments. This trade-off could have strong fitness implications for wild ectotherms

    Does thermal plasticity affect susceptibility to capture in fish? Insights from a simulated trap and trawl fishery

    Get PDF
    In fishes, physiological and behavioural traits can correlate with vulnerability to capture with fishing gears, highlighting the capacity of fisheries selection to drive phenotypic change in exploited populations. There remains a paucity of information regarding how different fishing gears may select on phenotypic traits and how relationships between individual traits and capture vulnerability change across environmental gradients. By simulating the capture process in a trawl and trap using wild minnows acclimated to different temperatures, we investigated how contrasting fishing gears select on behavioural and physiological traits, and how this selection is modulated by temperature. Despite similar risk of capture in each gear, selection differed between traps and trawls. Fish exhibiting low spontaneous activity were at greater capture risk in the trawl across all temperatures, while traps showed no selection except at 24°C. No relationships between physiological traits and capture vulnerability were found, except between swim performance and trap capture vulnerability at 24°C. This study demonstrates that fisheries selection on individual traits is likely context-specific, depending on both fishing gear type, and environment

    A physiological perspective on fisheries-induced evolution

    Get PDF
    There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears – and therefore fisheries-induced evolution (FIE) – but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g. metabolic rate), swimming performance (e.g. aerobic scope), neuroendocrinology (e.g. stress responsiveness), and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species’ distributions, and responses to environmental change

    A warmer environment can reduce sociability in an ectotherm

    Get PDF
    The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a ‘natural experiment’ of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations

    Egg quality in domesticated and wild seabass (D. labrax): a proteomic analysis

    No full text

    TUWTxy

    No full text
    tuebigen wild type coordinate dat

    Climate change induced deprivation of dietary essential fatty acids can reduce growth and mitochondrial efficiency of wild juvenile salmon

    No full text
    1. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are essential micronutrients for optimal functioning of cellular metabolism and for somatic growth of all vertebrates including fishes. In addition, n-3 LC-PUFA could also play a key role in response of fishes and other ectothermic vertebrates to changing temperatures. 2. An important, but largely overlooked, consequence of climate change is the reduced availability of dietary n-3 LC-PUFA in aquatic food webs. Changes in availability of dietary n-3 LC-PUFA have recently been proposed as a major driver of novel adaptations and diversification of consumers. Yet, there is only limited knowledge about how n-3 LC-PUFA depletion in aquatic food-webs will affect the performance of wild fishes. 3. Here we combine biochemistry and physiology at the cellular level with physiological and cognitive processes at the whole-animal level to test how ecologically relevant deprivation of n-3 LC-PUFA affects performance of wild juvenile Atlantic salmon (Salmo salar). 4. We found that juvenile salmon had a limited capacity to maintain the fatty acid profile of both muscle and brain under a n-3 LC-PUFA-deficient diet. Despite these findings, brain tissues showed remarkable functional stability in mitochondrial metabolism, and we found no effect of diet on learning ability. However, we found that mitochondrial efficiency in muscles and the somatic growth were reduced under a n-3 LC-PUFA-deficient diet. Importantly, we discovered that the somatic growth of juvenile salmon within both treatments decreased with increasing rate of DHA synthesis and retention. 5. Since DHA is essential for functioning of cellular metabolism, which together with body size are traits closely related to fitness of wild fishes, we suggest that the trade-off between growth rate and accumulation of DHA could play a critical role in resilience of juvenile salmon to the ongoing rapid environmental change
    corecore