243 research outputs found

    The role of spin-orbit coupling in the optical spectroscopy of atomic sodium isolated in solid xenon

    Get PDF
    Molecular dynamics calculations, based on the diatomics-in-molecules method, have been used to probe the manifestations of spin-orbit (SO) coupling in the experimental absorption bands of atomic sodium isolated in solid xenon. Inclusion of SO coupling of –320 cm−1 in spectral simulations of the 3p 2P 3s 2S transition leads to unequal band spacings which very closely match the asymmetrical bandshape observed for blue single vacancy (SV) site occupancy. This SO value, extracted in a previous MCD study, reveals the dramatic change in the effective SO coupling constant of the Na atom (from the gas phase value of +17 cm−1 ) in solid Xe when it is close to the 12 xenon atoms in the first surrounding sphere. In contrast, the symmetrical three-fold split band of the red tetra vacancy (TV) site in Na/Xe is not affected nearly as much by SO coupling. This reflects a greatly reduced “external heavy atom” effect when the 24 Xe atoms surrounding the Na atom in TV are located at greater distances. The contrasting behavior of sodium in the SV and TV sites suggests a strong dependence of the SO coupling strength on the Na–Xe distance

    Historical CO2 emissions from land-use and land-cover change and their uncertainty

    Get PDF
    Emissions from land-use and land-cover change are a key component of the global carbon cycle. Models are required to disentangle these emissions and the land carbon sink, however, because only the sum of both can be physically observed. Their assessment within the yearly community-wide effort known as the Global Carbon Budget remains a major difficulty, because it combines two lines of evidence that are inherently inconsistent: bookkeeping models and dynamic global vegetation models. Here, we propose a unifying approach relying on a bookkeeping model that embeds processes and parameters calibrated on dynamic global vegetation models, and the use of an empirical constraint. We estimate global CO2 emissions from land-use and land-cover change were 1.36 ± 0.42 Pg C yr−1 (1-σ range) on average over 2009–2018, and 206 ± 57 Pg C cumulated over 1750–2018. We also estimate that land-cover change induced a global loss of additional sink capacity – that is, a foregone carbon removal, not part of the emissions – of 0.68 ± 0.57 Pg C yr−1 and 32 ± 23 Pg C over the same periods, respectively. Additionally, we provide a breakdown of our results' uncertainty following aspects that include the land-use and land-cover change data sets used as input, and the model's biogeochemical parameters. We find the biogeochemical uncertainty dominates our global and regional estimates, with the exception of tropical regions in which the input data dominates. Our analysis further identifies key sources of uncertainty, and suggests ways to strengthen the robustness of future Global Carbon Budgets

    Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells

    Get PDF
    The human pathogen enteropathogenic Escherichia coli (EPEC), as well as the mouse pathogen Citrobacter rodentium, colonize the gut mucosa via attaching and effacing lesion formation and cause diarrheal diseases. EPEC and C. rodentium type III secretion system (T3SS) effectors repress innate immune responses and infiltration of immune cells. Inflammatory caspases such as caspase-1 and caspase-4/11 are crucial mediators of host defense and inflammation in the gut via their ability to process cytokines such as interleukin (IL)-1β and IL-18. Here we report that the effector NleF binds the catalytic domain of caspase-4 and inhibits its proteolytic activity. Following infection of intestinal epithelial cells (IECs) EPEC inhibited caspase-4 and IL-18 processing in an NleF-dependent manner. Depletion of caspase-4 in IECs prevented the secretion of mature IL-18 in response to infection with EPECΔnleF. NleF-dependent inhibition of caspase-11 in colons of mice prevented IL-18 secretion and neutrophil influx at early stages of C. rodentium infection. Neither wild-type C. rodentium nor C. rodentiumΔnleF triggered neutrophil infiltration or IL-18 secretion in Cas11 or Casp1/11-deficient mice. Thus, IECs have a key role in modulating early innate immune responses in the gut via a caspase-4/11—IL-18 axis, which is targeted by virulence factors encoded by enteric pathogens

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    Стимулированное излучение молекулами тетрабензопарфина в низкотемпературных матрицах благородных газов

    Get PDF
    В работе представлены результаты спектральных исследований молекул тетрабензопорфина (Н2ТБП), внедренных в твердотельные матрицы благородных газов (Ar, Xe)

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells

    Emergence of Arctic-like Rabies Lineage in India

    Get PDF
    Progenitors of Arctic-like rabies viruses, which now circulate extensively in India, may have been responsible for the emergence of the Arctic rabies lineage
    corecore