12 research outputs found

    A Point Mutation in PDGFRB Causes Autosomal-Dominant Penttinen Syndrome

    Get PDF
    Penttinen syndrome is a distinctive disorder characterized by a prematurely aged appearance with lipoatrophy, epidermal and dermal atrophy along with hypertrophic lesions that resemble scars, thin hair, proptosis, underdeveloped cheekbones, and marked acro-osteolysis. All individuals have been simplex cases. Exome sequencing of an affected individual identified a de novo c.1994T>C p.Val665Ala variant in PDGFRB, which encodes the platelet-derived growth factor receptor β. Three additional unrelated individuals with this condition were shown to have the identical variant in PDGFRB. Distinct mutations in PDGFRB have been shown to cause infantile myofibromatosis, idiopathic basal ganglia calcification, and an overgrowth disorder with dysmorphic facies and psychosis, none of which overlaps with the clinical findings in Penttinen syndrome. We evaluated the functional consequence of this causative variant on the PDGFRB signaling pathway by transfecting mutant and wild-type cDNA into HeLa cells, and transfection showed ligand-independent constitutive signaling through STAT3 and PLCγ. Penttinen syndrome is a clinically distinct genetic condition caused by a PDGFRB gain-of-function mutation that is associated with a specific and unusual perturbation of receptor function

    An Atypical 15q11.2 Microdeletion Not Involving SNORD116 Resulting in Prader–Willi Syndrome

    No full text
    Loss of expression of paternally imprinted genes in the 15q11.2-q13 chromosomal region leads to the neurodevelopmental disorder Prader–Willi Syndrome (PWS). The PWS critical region contains four paternally expressed protein-coding genes along with small nucleolar RNA (snoRNA) genes under the control of the SNURF-SNRPN promoter, including the SNORD116 snoRNA gene cluster that is implicated in the PWS disease etiology. A 5-7 Mb deletion, maternal uniparental disomy, or an imprinting defect of chromosome 15q affect multiple genes in the PWS critical region, causing PWS. However, the individual contributions of these genes to the PWS phenotype remain elusive. Reports of smaller, atypical deletions may refine the boundaries of the PWS critical region or suggest additional disease-causing mechanisms. We describe an adult female with a classic PWS phenotype due to a 78 kb microdeletion that includes only exons 2 and 3 of SNURF-SNRPN with apparently preserved expression of SNORD116

    Orthopaedic Management of Leg-length Discrepancy in Proteus Syndrome: A Case Series

    No full text
    © 2018 Wolters Kluwer Health, Inc. All rights reserved. Introduction: Proteus syndrome (PS) is a rare mosaic disorder comprising asymmetric bony and soft tissue overgrowth leading to significant morbidity. Placement of growth inhibition hardware with subsequent epiphyseal arrest improves leg-length and angular deformities in pediatric patients without PS. The purpose of this study was to review the surgical approach and present outcomes, complications, and recommendations in 8 patients with PS and leg-length discrepancy (LLD). Methods: We conducted a retrospective chart review of 8 patients with PS whose primary reason for surgery was LLD. Patients were eligible if they met clinical diagnostic criteria for PS and if the National Institutes of Health team performed at least 1 of their surgical interventions between 2005 and 2015. Surgical techniques included growth inhibition, with tension band plates, applied ≥1 times, and epiphyseal arrest. Results: Eight patients, followed for an average of 4.6 years (range, 1.0 to 7.1 y) after the index procedure, were included in this analysis. Average age at first LLD surgery was 9.4 years (range, 6.1 to 13.6 y); the average LLD was 3.4 cm (range, 0.4 to 7.0 cm) at presentation, and 5.0 cm (range, 1.8 to 10.0 cm) at the time of the first LLD surgery. Participants underwent 23 total surgeries (range, 1 to 5 per patient) and 7 patients have completed surgical intervention. For the 7 patients who did not require overcorrection the average LLD at the last clinical encounter was 2.6 cm (range, 0.6 to 7.2 cm). We encountered 2 complications: 2 patients developed mild knee valgus, which responded to standard guided growth techniques. Conclusions: This case series suggests that growth inhibition and epiphyseal arrest in children with PS can reduce LLD with few complications. Careful monitoring, rapid mobilization, deep venous thrombosis prophylaxis, and sequential compression devices were also integral elements of our surgical protocol. Level of Evidence: Level IV

    Deleterious, protein-altering variants in the transcriptional coregulator ZMYM3 in 27 individuals with a neurodevelopmental delay phenotype

    No full text
    Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene

    Deleterious, protein-altering variants in the transcriptional coregulator ZMYM3 in 27 individuals with a neurodevelopmental delay phenotype

    No full text
    Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene
    corecore