85 research outputs found

    The effects of subcurative praziquantel treatment on life-history traits and trade-offs in drug-resistant Schistosoma mansoni

    Get PDF
    Natural selection acts on all organisms, including parasites, to maximize reproductive fitness. Drug resistance traits are often associated with life-history costs in the absence of treatment. Schistosomiasis control programmes rely on mass drug administration to reduce human morbidity and mortality. Although hotspots of reduced drug efficacy have been reported, resistance is not widespread. Using Bayesian state-space models (SSMs) fitted to data from an in vivo laboratory system, we tested the hypothesis that the spread of resistant Schistosoma mansoni may be limited by life-history costs not present in susceptible counterparts. S. mansoni parasites from a praziquantel-susceptible (S), a praziquantel-resistant (R) or a mixed line of originally resistant and susceptible parasites (RS) were exposed to a range of praziquantel doses. Parasite numbers at each life stage were quantified in their molluscan intermediate and murine definitive hosts across four generations, and SSMs were used to estimate key life-history parameters for each experimental group over time. Model outputs illustrated that parasite adult survival and fecundity in the murine host decreased across all lines, including R, with increasing drug pressure. Trade-offs between adult survival and fecundity were observed in all untreated lines, and these remained strong in S with praziquantel pressure. In contrast, trade-offs between adult survival and fecundity were lost under praziquantel pressure in R. As expected, parasite life-history traits within the molluscan host were complex, but trade-offs were demonstrated between parasite establishment and cercarial output. The observed trade-offs between generations within hosts, which were modified by praziquantel treatment in the R line, could limit the spread of R parasites under praziquantel pressure. Whilst such complex life-history costs may be difficult to detect using standard empirical methods, we demonstrate that SSMs provide robust estimates of life-history parameters, aiding our understanding of costs and trade-offs of resistant parasites within this system and beyond

    Modelling morbidity for neglected tropical diseases: the long and winding road from cumulative exposure to long-term pathology

    Get PDF
    Reducing the morbidities caused by neglected tropical diseases (NTDs) is a central aim of ongoing disease control programmes. The broad spectrum of pathogens under the umbrella of NTDs lead to a range of negative health outcomes, from malnutrition and anaemia to organ failure, blindness and carcinogenesis. For some NTDs, the most severe clinical manifestations develop over many years of chronic or repeated infection. For these diseases, the association between infection and risk of long-term pathology is generally complex, and the impact of multiple interacting factors, such as age, co-morbidities and host immune response, is often poorly quantified. Mathematical modelling has been used for many years to gain insights into the complex processes underlying the transmission dynamics of infectious diseases; however, long-term morbidities associated with chronic or cumulative exposure are generally not incorporated into dynamic models for NTDs. Here we consider the complexities and challenges for determining the relationship between cumulative pathogen exposure and morbidity at the individual and population levels, drawing on case studies for trachoma, schistosomiasis and foodborne trematodiasis. We explore potential frameworks for explicitly incorporating long-term morbidity into NTD transmission models, and consider the insights such frameworks may bring in terms of policy-relevant projections for the elimination era. This article is part of the theme issue ‘Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs’

    Reduced efficacy of praziquantel against Schistosoma mansoni associated with multiple-rounds of mass drug administration

    Get PDF
    The efficacy of praziquantel against Schistosoma mansoni was significantly lower in Ugandan schools that had received more prior rounds of mass drug administration, as determined by fitting a statistical model to parasite egg counts before and after treatment

    Opportunities and challenges for modelling epidemiological and evolutionary dynamics in a multihost, multiparasite system: Zoonotic hybrid schistosomiasis in West Africa

    Get PDF
    Multihost multiparasite systems are evolutionarily and ecologically dynamic, which presents substantial trans‐disciplinary challenges for elucidating their epidemiology and designing appropriate control. Evidence for hybridizations and introgressions between parasite species is gathering, in part in line with improvements in molecular diagnostics and genome sequencing. One major system where this is becoming apparent is within the Genus Schistosoma, where schistosomiasis represents a disease of considerable medical and veterinary importance, the greatest burden of which occurs in sub‐Saharan Africa. Interspecific hybridizations and introgressions bring an increased level of complexity over and above that already inherent within multihost, multiparasite systems, also representing an additional source of genetic variation that can drive evolution. This has the potential for profound implications for the control of parasitic diseases, including, but not exclusive to, widening host range, increased transmission potential and altered responses to drug therapy. Here, we present the challenging case example of haematobium group Schistosoma spp. hybrids in West Africa, a system involving multiple interacting parasites and multiple definitive hosts, in a region where zoonotic reservoirs of schistosomiasis were not previously considered to be of importance. We consider how existing mathematical model frameworks for schistosome transmission could be expanded and adapted to zoonotic hybrid systems, exploring how such model frameworks can utilize molecular and epidemiological data, as well as the complexities and challenges this presents. We also highlight the opportunities and value such mathematical models could bring to this and a range of similar multihost, multi and cross‐hybridizing parasites systems in our changing world

    Modelling the Effects of Mass Drug Administration on the Molecular Epidemiology of Schistosomes

    Get PDF
    As national governments scale up mass drug administration (MDA) programs aimed to combat neglected tropical diseases (NTDs), novel selection pressures on these parasites increase. To understand how parasite populations are affected by MDA and how to maximize the success of control programmes, it is imperative for epidemiological, molecular and mathematical modelling approaches to be combined. Modelling of parasite population genetic and genomic structure, particularly of the NTDs, has been limited through the availability of only a few molecular markers to date. The landscape of infectious disease research is being dramatically reshaped by next-generation sequencing technologies and our understanding of how repeated selective pressures are shaping parasite populations is radically altering. Genomics can provide high-resolution data on parasite population structure, and identify how loci may contribute to key phenotypes such as virulence and/or drug resistance. We discuss the incorporation of genetic and genomic data, focussing on the recently sequenced Schistosoma spp., into novel mathematical transmission models to inform our understanding of the impact of MDA and other control methods. We summarize what is known to date, the models that exist and how population genetics has given us an understanding of the effects of MDA on the parasites. We consider how genetic and genomic data have the potential to shape future research, highlighting key areas where data are lacking, and how future molecular epidemiology knowledge can aid understanding of transmission dynamics and the effects of MDA, ultimately informing public health policy makers of the best interventions for NTDs

    Diagnosis of helminths depends on worm fecundity and the distribution of parasites within hosts

    Get PDF
    Helminth transmission and morbidity are dependent on the number of mature parasites within a host; however, observing adult worms is impossible for many natural infections. An outstanding challenge is therefore relating routine diagnostics, such as faecal egg counts, to the underlying worm burden. This relationship is complicated by density-dependent fecundity (egg output per worm reduces due to crowding at high burdens) and the skewed distribution of parasites (majority of helminths aggregated in a small fraction of hosts). We address these questions for the carcinogenic liver fluke Opisthorchis viverrini, which infects approximately 10 million people across Southeast Asia, by analysing five epidemiological surveys (n = 641) where adult flukes were recovered. Using a mechanistic model, we show that parasite fecundity varies between populations, with surveys from Thailand and Laos demonstrating distinct patterns of egg output and density-dependence. As the probability of observing faecal eggs increases with the number of mature parasites within a host, we quantify diagnostic sensitivity as a function of the worm burden and find that greater than 50% of cases are misdiagnosed as false negative in communities close to elimination. Finally, we demonstrate that the relationship between observed prevalence from routine diagnostics and true prevalence is nonlinear and strongly influenced by parasite aggregation

    Transmission dynamics and control of multidrug-resistant Klebsiella pneumoniae in neonates in a developing country.

    Get PDF
    Multidrug-resistant Klebsiella pneumoniae is an increasing cause of infant mortality in developing countries. We aimed to develop a quantitative understanding of the drivers of this epidemic by estimating the effects of antibiotics on nosocomial transmission risk, comparing competing hypotheses about mechanisms of spread, and quantifying the impact of potential interventions. Using a sequence of dynamic models, we analysed data from a one-year prospective carriage study in a Cambodian neonatal intensive care unit with hyperendemic third-generation cephalosporin-resistant K. pneumoniae. All widely-used antibiotics except imipenem were associated with an increased daily acquisition risk, with an odds ratio for the most common combination (ampicillin + gentamicin) of 1.96 (95% CrI 1.18, 3.36). Models incorporating genomic data found that colonisation pressure was associated with a higher transmission risk, indicated sequence type heterogeneity in transmissibility, and showed that within-ward transmission was insufficient to maintain endemicity. Simulations indicated that increasing the nurse-patient ratio could be an effective intervention

    epicontacts: Handling, visualisation and analysis of epidemiological contacts.

    Get PDF
    Epidemiological outbreak data is often captured in line list and contact format to facilitate contact tracing for outbreak control. epicontacts is an R package that provides a unique data structure for combining these data into a single object in order to facilitate more efficient visualisation and analysis. The package incorporates interactive visualisation functionality as well as network analysis techniques. Originally developed as part of the Hackout3 event, it is now developed, maintained and featured as part of the R Epidemics Consortium (RECON). The package is available for download from the Comprehensive R Archive Network (CRAN) and GitHub

    Towards Evidence-based Control of Opisthorchis viverrini.

    Get PDF
    Transmission of the carcinogenic liver fluke Opisthorchis viverrini is ongoing across Southeast Asia. Endemic countries within the region are in different stages of achieving control. However, evidence on which interventions are the most effective for reducing parasite transmission, and the resulting liver cancer, is currently lacking. Quantitative modelling can be used to evaluate different control measures against O. viverrini and assist the design of clinical trials. In this article we evaluate the epidemiological parameters that underpin models of O. viverrini and the data necessary for their estimation, with the aim of developing evidence-based strategies for parasite control at a national or regional level
    • 

    corecore