298 research outputs found

    Intra-testicular injection of adenoviral constructs results in Sertoli cell-specific gene expression and disruption of the seminiferous epithelium

    Get PDF
    Spermatogenesis is a complex process that cannot be modelled in vitro. The somatic Sertoli cells (SCs) within the seminiferous tubules perform a key role in supporting maturation of germ cells (GCs). Progress has been made in determining what aspects of SC function are critical to maintenance of fertility by developing rodent models based on the Cre/LoxP system; however, this is time-consuming and is only applicable to mice. The aim of the present study was to establish methods for direct injection of adenoviral vectors containing shRNA constructs into the testis as a way of inducing target-selective knock-down in vivo. This paper describes a series of experiments using adenovirus expressing a green fluorescent protein (GFP) transgene. Injection via the efferent ductules resulted in SC-specific expression of GFP; expression levels paralleled the amount of infective viral particles injected. At the highest doses of virus seminiferous tubule architecture were grossly disturbed and immune cell invasion noted. At lower concentrations, the expression of GFP was variable/negligible, the seminiferous tubule lumen was maintained but stage-dependent GC loss and development of numerous basal vacuoles was observed. These resembled intercellular dilations of SC junctional complexes previously described in rats and may be a consequence of disturbances in SC function due to interaction of the viral particles with the coxsackie/adenovirus receptor that is a component of the junctional complexes within the blood testis barrier. In conclusion, intra-testicular injection of adenoviral vectors disturbs SC function in vivo and future work will therefore focus on the use of lentiviral delivery systems

    Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development

    Get PDF
    The mechanisms controlling mammalian organ size have long been a source of fascination for biologists. These controls are needed to both ensure the integrity of the body plan and to restrict inappropriate proliferation that could lead to cancer. Regulation of liver size is of particular interest inasmuch as this organ maintains the capacity for regeneration throughout life, and is able to regain precisely its original mass after partial surgical resection. Recent studies using genetically engineered mouse strains have shed new light on this problem; the Hippo signalling pathway, first elucidated as a regulator of organ size in Drosophila, has been identified as dominant determinant of liver growth. Defects in this pathway in mouse liver lead to sustained liver overgrowth and the eventual development of both major types of liver cancer, hepatocellular carcinoma and cholangiocarcinoma. In this review, we discuss the role of Hippo signalling in liver biology and the contribution of this pathway to liver cancer in humans

    Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns

    Get PDF
    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg-and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from singly charged peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s) in multiply protonated peptides. Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages Nterminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and may be useful in algorithm development that employs improved models to predict fragment ion intensities. Low-energy collision-induced dissociation (CID) in mass spectrometry has been used extensively in peptide sequencing for protein identification and analysis of protein modifications. 1,2 Computer algorithms are employed to automate the spectral analysis and assign peptide sequences to the fragmentation spectra. 2-4 Numerous peptide fragmentation spectra are obtained everyday, but only a low percentage (e.g., 10-35%) of them are successfully identified by readily available algorithms. [5][6][7][8] One explanation for the high failure rate of current algorithms is the very simple fragmentation model on which they are based, which assumes that cleavage will occur mainly, if not exclusively, at the amide bonds between consecutive amino acid residues to produce ions of identical abundance (or intensity), regardless of the identity or the chemical property of the residues. 4,9 Although intensity patterns of the fragment ions from the same peptide under the same experimental settings are highly reproducible, current readily available algorithms only use the mass-to-charge (m/z) information from a tandem mass (MS/MS) spectrum and ignore the other information availablesthe relative intensity information. While this approach is sufficient to identify many peptides, many others yield fragmentation patterns that significantly deviate from a uniform fragmentation model. 8 A more detailed and chemically meaningful fragmentation model might improve algorithm performance and might include using different models for different candidate sequences. In addition, the gas-phase unimolecula

    RESCUE OF HIPPO CO-ACTIVATOR YAP1 TRIGGERS DNA DAMAGE-INDUCED APOPTOSIS IN HEMATOLOGICAL CANCERS

    Get PDF
    Oncogene–induced DNA damage elicits genomic instability in epithelial cancer cells, but apoptosis is blocked through inactivation of the tumor suppressor p53. In hematological cancers, the relevance of ongoing DNA damage and mechanisms by which apoptosis is suppressed are largely unknown. We found pervasive DNA damage in hematologic malignancies including multiple myeloma, lymphoma and leukemia, which leads to activation of a p53–independent, pro-apoptotic network centered on nuclear relocalization of ABL1 kinase. Although nuclear ABL1 triggers cell death through its interaction with the Hippo pathway co–activator YAP1 in normal cells, we show that low YAP1 levels prevent nuclear ABL1–induced apoptosis in these hematologic malignancies. YAP1 is under the control of a serine–threonine kinase, STK4. Importantly, genetic inactivation of STK4 restores YAP1 levels, triggering cell death in vitro and in vivo. Our data therefore identify a novel synthetic–lethal strategy to selectively target cancer cells presenting with endogenous DNA damage and low YAP1 levels

    More resistant tendons obtained from the association of Heteropterys aphrodisiaca and endurance training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Popular Brazilian medicine uses <it>Heteropterys aphrodisiaca </it>infusion as a tonic or stimulant, for the treatment of nervous debility and breakdown and for muscle and bone weakness. This study investigated the effects of <it>Heteropterys aphrodisiaca </it>infusion on the tendon properties and extracellular matrix of rats under endurance training.</p> <p>Methods</p> <p>Wistar rats were grouped as follows: CS- control sedentary, HS- <it>H. aphrodisiaca </it>sedentary, CT-control trained, HT- <it>H. aphrodisiaca </it>trained. The training protocol consisted in running on a motorized treadmill, five times a week, with weekly increase in treadmill speed and duration. Control groups received water while the HS and HT groups received <it>H. aphrodisiaca </it>infusion, daily, by gavage for the 8 weeks of training. Achilles tendons were frozen for biochemical and biomechanical analysis or preserved in Karnovsky's fixative, then processed for histomorphological analysis with light microscopy.</p> <p>Results</p> <p>Biomechanical analysis showed significant increase in maximum load, maximum stress, modulus of elasticity and stiffness of the HT animals' tendons. The metalloproteinase-2 activity was reduced in the HT group. The compression region of HT animals' tendons had a stronger and more intense metachromasy, which suggests an increase in glycosaminoglycan concentration in this region of the tendon. The most intense birefringence was observed in both compression and tension regions of HT animals' tendons, which may indicate a higher organizational level of collagen bundles. The hydroxyproline content increased in the HT group.</p> <p>Conclusions</p> <p>The association of endurance training with <it>H. aphrodisiaca </it>resulted in more organized collagen bundles and more resistant tendons to support higher loads from intense muscle contraction. Despite the clear anabolic effects of <it>Heteropterys aphrodisiaca </it>and the endurance exercise association, no side effects were observed, such as those found for synthetic anabolic androgenic steroids.</p
    • …
    corecore