94 research outputs found

    Hydroxyapatite nanoparticle injectable hydrogel scaffold to support osteogenic differentiation of human mesenchymal stem cells

    Get PDF
    Bone loss associated with degenerative disease and trauma is a clinical problem increasing with the aging population. Thus, effective bone augmentation strategies are required; however, many have the disadvantages that they require invasive surgery and often the addition of expensive growth factors to induce osteoblast differentiation. Here, we investigated a Laponite crosslinked, pNIPAMDMAc copolymer (L-pNIPAM-co-DMAc) hydrogel with hydroxyapatite nanoparticles (HAPna), which can be maintained as a liquid ex vivo, injected via narrowgauge needle into affected bone, followed by in situ gelation to deliver and induce osteogenic differentiation of human mesenchymal stem cells (hMSC). L-pNIPAMco-DMAc hydrogels were synthesised and HAPna added post polymerisation. Commercial hMSCs from one donor (Lonza) were incorporated in liquid hydrogel, the mixture solidified and cultured for up to 6 weeks. Viability of hMSCs was maintained within hydrogel constructs containing 0.5 mg/mL HAPna. SEM analysis demonstrated matrix deposition in cellular hydrogels which were absent in acellular controls. A significant increase in storage modulus (G’) was observed in cellular hydrogels with 0.5 mg/mL HAPna. Semi-quantitative immunohistochemistry and histological analysis demonstrated that bone differentiation markers and collagen deposition was induced within 48 h, with increased calcium deposition with time. The thermally triggered hydrogel system, described here, was sufficient without the need of additional growth factors or osteogenic media to induce osteogenic differentiation of commercial hMSCs. Preliminary data presented here will be expanded on multiple patient samples to ensure differentiation is seen in these samples. This system could potentially reduce treatment costs and simplify the tre

    A 7-year follow-up of sacral anterior root stimulation for bladder control in patients with a spinal cord injury: quality of life and users' experiences\ud

    Get PDF
    Study design: Cross-sectional descriptive study.\ud \ud Objectives: To assess long-term effects and quality of life (QoL) of using sacral anterior root stimulation (SARS) in spinal cord injured patients.\ud \ud Setting: Neurosurgical and Urological Departments of a large teaching hospital and a large rehabilitation centre in the Netherlands.\ud \ud Methods: In all, 42 patients with complete spinal cord injury (SCI) implanted between 1987 and 2000 were included. A questionnaire was constructed to determine complications, technical failures and personal experiences of the patients. The Qualiveen questionnaire was used and the outcome was compared with data obtained from a reference group of 400 SCI patients with neurogenic bladder problems not using the bladder controller. The Qualiveen questionnaire measures disease-specific aspects in four domains with respect to limitations, constraints, fears and feelings and general QoL aspects, suitable for use in SCI patients with urinary disorders.\ud \ud Results: The results of 37 patients are presented. Our results with the bladder controller with respect to medical and technical complications and infection rates are similar to the results presented by others. From users' experiences, the most important advantages reported were a decreased infection rate (68%), improved social life (54%) and continence (54%). Comparison of the obtained results of our patient group with the Qualiveen questionnaire with a reference group not using the bladder controller indicates that the specific impact of urinary disorders in the four domains on QoL is reduced and that general QoL is improved.\ud \ud Conclusion: SARS is effective and safe for neurogenic bladder management in patients with complete SCI. Users' experiences are positive. Furthermore, this therapy seems to reduce the effects of urinary-disorder-specific QoL aspects, and to increase the QoL in general\u

    Role of pulmonary intravascular macrophages in endotoxin-induced lung inflammation and mortality in a rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bile-duct ligated (BDL) rats recruit pulmonary intravascular macrophages (PIMs) and are highly susceptible to endotoxin-induced mortality. The mechanisms of this enhanced susceptibility and mortality in BDL rats, which are used as a model of hepato-pulmonary syndrome, remain unknown. We tested a hypothesis that recruited PIMs promote endotoxin-induced mortality in a rat model.</p> <p>Methods</p> <p>Rats were subjected to BDL to induce PIM recruitment followed by treatment with gadolinium chloride (GC) to deplete PIMs. Normal and BDL rats were treated intravenously with <it>E. coli </it>lipopolysaccharide (LPS) with or without GC pre-treatment followed by collection and analyses of lungs for histopathology, electron microscopy and cytokine quantification.</p> <p>Results</p> <p>BDL rats recruited PIMs without any change in the expression of IL-1β, TNF-α and IL-10. GC caused reduction in PIMs at 48 hours post-treatment (P < 0.05). BDL rats treated intravenously with <it>E. coli </it>LPS died within 3 hours of the challenge while the normal LPS-treated rats were euthanized at 6 hours after the LPS treatment. GC treatment of rats 6 hours or 48 hours before LPS challenge resulted in 80% (1/5) and 100% (0/5) survival, respectively, at 6 hours post-LPS treatment. Lungs from BDL+LPS rats showed large areas of perivascular hemorrhages compared to those pre-treated with GC. Concentrations of IL-1β, TNF-α and IL-10 were increased in lungs of BDL+LPS rats compared to BDL rats treated with GC 48 hours but not 6 hours before LPS (P < 0.05).</p> <p>Conclusion</p> <p>We conclude that PIMs increase susceptibility for LPS-induced lung injury and mortality in this model, which is blocked by a reduction in their numbers or their inactivation.</p

    Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessment of malaria endemicity at different altitudes and transmission intensities, in the era of dwindling vector densities in the highlands, will provide valuable information for malaria control and surveillance. Measurement of serum anti-malarial antibodies is a useful marker of malaria exposure that indicates long-term transmission potential. We studied the serologic evidence of malaria endemicity at two highland sites along a transmission intensity cline. An improved understanding of the micro-geographic variation in malaria exposure in the highland ecosystems will be relevant in planning effective malaria control.</p> <p>Methods</p> <p>Total IgG levels to <it>Plasmodium falciparum </it>MSP-1<sub>19 </sub>were measured in an age-stratified cohort (< 5, 5-14 and ≥ 15 years) in 795 participants from an uphill and valley bottom residents during low and high malaria transmission seasons. Antibody prevalence and level was compared between different localities. Regression analysis was performed to examine the association between antibody prevalence and parasite prevalence. Age-specific MSP-1<sub>19 </sub>seroprevalence data was fitted to a simple reversible catalytic model to investigate the relationship between parasite exposure and age.</p> <p>Results</p> <p>Higher MSP-1<sub>19 </sub>seroprevalence and density were observed in the valley residents than in the uphill dwellers. Adults (> 15 years) recorded high and stable immune response in spite of changing seasons. Lower responses were observed in children (≤ 15 years), which, fluctuated with changing seasons particularly in the valley residents. In the uphill population, annual seroconversion rate (SCR) was 8.3% and reversion rate was 3.0%, with seroprevalence reaching a plateau of 73.3% by age of 20. Contrary, in the valley bottom population, the annual SCR was 35.8% and the annual seroreversion rate was 3.5%, and seroprevalence in the population had reached 91.2% by age 10.</p> <p>Conclusion</p> <p>The study reveals the micro-geographic variation in malaria endemicity in the highland eco-system; this validates the usefulness of sero-epidemiological tools in assessing malaria endemicity in the era of decreasing sensitivity of conventional tools.</p

    The sperm factor: paternal impact beyond genes

    Get PDF
    The fact that sperm carry more than the paternal DNA has only been discovered just over a decade ago. With this discovery, the idea that the paternal condition may have direct implications for the fitness of the offspring had to be revisited. While this idea is still highly debated, empirical evidence for paternal effects is accumulating. Male condition not only affects male fertility but also offspring early development and performance later in life. Several factors have been identified as possible carriers of non-genetic information, but we still know little about their origin and function and even less about their causation. I consider four possible non-mutually exclusive adaptive and non-adaptive explanations for the existence of paternal effects in an evolutionary context. In addition, I provide a brief overview of the main non-genetic components found in sperm including DNA methylation, chromatin modifications, RNAs and proteins. I discuss their putative functions and present currently available examples for their role in transferring non-genetic information from the father to the offspring. Finally, I identify some of the most important open questions and present possible future research avenues

    Systemic versus localized coagulation activation contributing to organ failure in critically ill patients

    Get PDF
    In the pathogenesis of sepsis, inflammation and coagulation play a pivotal role. Increasing evidence points to an extensive cross-talk between these two systems, whereby inflammation not only leads to activation of coagulation but coagulation also considerably affects inflammatory activity. The intricate relationship between inflammation and coagulation may not only be relevant for vascular atherothrombotic disease in general but has in certain clinical settings considerable consequences, for example in the pathogenesis of microvascular failure and subsequent multiple organ failure, as a result of severe infection and the associated systemic inflammatory response. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Pro-inflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on an interleukin-6-induced expression of tissue factor on activated mononuclear cells and endothelial cells and is insufficiently counteracted by physiological anticoagulant mechanisms and endogenous fibrinolysis. Interestingly, apart from the overall systemic responses, a differential local response in various vascular beds related to specific organs may occur

    Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments

    Get PDF
    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design
    corecore