47 research outputs found

    Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340

    Get PDF
    IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor-sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of pre-existing low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or micro-faulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor-sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits comprised of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution dataset to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes. This article is protected by copyright. All rights reserved

    Effects of source-to-listener distance and masking on perception of cochlear implant processed speech in reverberant rooms

    No full text
    Two experiments examined the effects of source-to-listener distance (SLD) on sentence recognition in simulations of cochlear implant usage in noisy, reverberant rooms. Experiment 1 tested sentence recognition for three locations in the reverberant field of a small classroom (volume=79.2 m3). Subjects listened to sentences mixed with speech-spectrum noise that were processed with simulated reverberation followed by either vocoding (6, 12, or 24 spectral channels) or no further processing. Results indicated that changes in SLD within a small room produced only minor changes in recognition performance, a finding likely related to the listener remaining in the reverberant field. Experiment 2 tested sentence recognition for a simulated six-channel implant in a larger classroom (volume=175.9 m3) with varying levels of reverberation that could place the three listening locations in either the direct or reverberant field of the room. Results indicated that reducing SLD did improve performance, particularly when direct sound dominated the signal, but did not completely eliminate the effects of reverberation. Scores for both experiments were predicted accurately from speech transmission index values that modeled the effects of SLD, reverberation, and noise in terms of their effects on modulations of the speech envelope. Such models may prove to be a useful predictive tool for evaluating the quality of listening environments for cochlear implant users

    Developmental mechanisms underlying differential claw expression in the autopodia of geckos

    Get PDF
    BACKGROUND: The limb and autopodium are frequently employed to study pattern formation during embryonic development, providing insights into how cells give rise to complex anatomical structures. With regard to the differentiation of structures at the distal tips of digits, geckos constitute an attractive clade, because within their ranks they exhibit multiple independent occurrences of claw loss and reduction, these being linked to the development of adhesive pads. The developmental patterns that lead to claw loss, however, remain undescribed. Among geckos, Tarentola is a genus characterized by large claws on digits III and IV of the manus and pes, with digits I, II, and V bearing only vestigial claws, or lacking them entirely. The variable expression of claws on different digits provides the opportunity to investigate the processes leading to claw reduction and loss within a single species. RESULTS: Here, we document the embryonic developmental dynamics that lead to this intraspecifically variable pattern, focusing on the cellular processes of proliferation and cell death. We find that claws initially develop on all digits of all autopodia, but, later in development, those of digits I, II, and V regress, leading to the adult condition in which robust claws are evident only on digits III and IV. Early apoptotic activity at the digit tips, followed by apoptosis of the claw primordium, premature ossification of the terminal phalanges, and later differential proliferative activity are collectively responsible for claw regression in particular digits. CONCLUSIONS: Claw reduction and loss in Tarentola result from differential intensities of apoptosis and cellular proliferation in different digits, and these processes have already had some effect before visible signs of claw development are evident. The differential processes persist through later developmental stages. Variable expression of iteratively homologous structures between digits within autopodia makes claw reduction and loss in Tarentola an excellent vehicle for exploring the developmental mechanisms that lead to evolutionary reduction and loss of structures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13227-015-0003-9) contains supplementary material, which is available to authorized users
    corecore