1,382 research outputs found
Hydrogen maser oscillation at 10 K
A low temperature atomic hydrogen maser was developed using frozen atomic neon as the storage surface. The maser has been operated in the pulsed mode at temperatures from 6 K to 11 K and as a self-excited oscillator from 9 K to 10.5 K
The CANADA-FRANCE REDSHIFT SURVEY XIII: The luminosity density and star-formation history of the Universe to z ~ 1
The comoving luminosity density of the Universe is estimated from the CFRS
faint galaxy sample in three wavebands (2800A, 4400A and 1 micron) over the
redshift range 0 < z < 1. In all three wavebands, the comoving luminosity
density increases markedly with redshift. For a (q_0 = 0.5, Omega = 1.0)
cosmological model, the comoving luminosity density increases as at 1 micron, as at 4400A and as at 2800A, these exponents being reduced by 0.43 and 1.12 for (0.05,0.1)
and (-0.85,0.1) cosmological models respectively. The variation of the
luminosity density with epoch can be reasonably well modelled by an actively
evolving stellar population with a Salpeter initial mass function (IMF)
extending to 125 M_sun, a star-formation rate declining with a power 2.5, and a
turn-on of star-formation at early epochs. A Scalo (1986) IMF extending to the
same mass limit produces too many long-lived low mass stars. This rapid
evolution of the star-formation rate and comoving luminosity density of the
Universe is in good agreement with the conclusions of Pei and Fall (1995) from
their analysis of the evolving metallicity of the Universe. One consequence of
this evolution is that the physical luminosity density at short wavelengths has
probably declined by two orders of magnitude since z ~ 1.Comment: uuencoded compressed tar file containing 8 page Tex file, 2
postscript figures and 2 tables. Ap J Letters, in press. Also available at
http://www.astro.utoronto.ca/~lilly/CFRS/papers.htm
Automated Certification of Authorisation Policy Resistance
Attribute-based Access Control (ABAC) extends traditional Access Control by
considering an access request as a set of pairs attribute name-value, making it
particularly useful in the context of open and distributed systems, where
security relevant information can be collected from different sources. However,
ABAC enables attribute hiding attacks, allowing an attacker to gain some access
by withholding information. In this paper, we first introduce the notion of
policy resistance to attribute hiding attacks. We then propose the tool ATRAP
(Automatic Term Rewriting for Authorisation Policies), based on the recent
formal ABAC language PTaCL, which first automatically searches for resistance
counter-examples using Maude, and then automatically searches for an Isabelle
proof of resistance. We illustrate our approach with two simple examples of
policies and propose an evaluation of ATRAP performances.Comment: 20 pages, 4 figures, version including proofs of the paper that will
be presented at ESORICS 201
Myosin VI and vinculin cooperate during the morphogenesis of cadherin cellâcell contacts in mammalian epithelial cells
Cooperation between cadherins and the actin cytoskeleton controls many aspects of epithelial biogenesis. We report here that myosin VI critically regulates the morphogenesis of epithelial cellâcell contacts. As epithelial monolayers mature in culture, discontinuous cellâcell contacts are initially replaced by continuous (cohesive) contacts. Myosin VI is recruited to cell contacts as they become linear and cohesive, where it forms a biochemical complex with epithelial cadherin (E-cadherin). Myosin VI is necessary for strong cadherin adhesion, for cells to form cohesive linear contacts, and for the integrity of the apical junctional complex. We find that vinculin mediates this effect of myosin VI. Myosin VI is necessary for vinculin and E-cadherin to interact. A combination of gain and loss of function approaches identifies vinculin as a downstream effector of myosin VI that is necessary for the integrity of intercellular contacts. We propose that myosin VI and vinculin form a molecular apparatus that generates cohesive cellâcell contacts in cultured mammalian epithelia
Soup to tree: the phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean rainforest sample
In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained via masstrapping, many of which will be new species, could be incorporated routinely in phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures via mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from
~500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from
existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined, only minor topological changes are induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, whilst the ecological sample
expands the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of
uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA âsuperbarcodesâ for testing hypotheses regarding global patterns of diversity
Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys - IV. Influence of mergers in the evolution of faint field galaxies from z~1
HST images of a sample of 285 galaxies with measured z from the CFRS and
Autofib-LDSS redshift surveys are analysed to derive the evolution of the
merger fraction out to z~1. We have performed visual and machine-based merger
identifications, as well as counts of bright pairs of galaxies with magnitude
differences less than 1.5 mag. We find that the pair fraction increases with z,
with up to ~20% of the galaxies being in physical pairs at z~0.75-1. We derive
a merger fraction varying with z as (1+z)^{3.2 +/- 0.6}, after correction for
line-of-sight contamination, in excellent agreement with the merger fraction
derived from the visual classification of mergers for which m = 3.4 +/- 0.6.
After correcting for seeing effects on the ground-based selection of survey
galaxies, we conclude that the pair fraction evolves as (1+z)^{2.7 +/- 0.6}.
This implies that an average L* galaxy will have undergone 0.8 to 1.8 merger
events from z=1 to 0, with 0.5 to 1.2 merger events occuring in a 2 Gyr time
span at z~0.9. This result is consistent with predictions from semi-analytical
models of galaxy formation. From the simple co-addition of the observed
luminosities of the galaxies in pairs, physical mergers are computed to lead to
a brightening of 0.5 mag for each pair on average, and a boost in star
formation rate of a factor of 2, as derived from the average [O II] equivalent
widths. Mergers of galaxies are therefore contributing significantly to the
evolution of both the luminosity function and luminosity density of the
Universe out to z~1.Comment: 14 pages, 6 PS figures included. Accepted for publication in MNRA
Protostars and Outflows in the NGC7538 - IRS9 Cloud Core
New high resolution observations of HCO+ J=1-0, H13CN J=1-0, SO 2,2 - 1,1,
and continuum with BIMA at 3.4 mm show that the NGC7538 - IRS9 cloud core is a
site of active ongoing star formation. Our observations reveal at least three
young bipolar molecular outflows, all ~ 10,000 -- 20,000 years old. IRS9 drives
a bipolar, extreme high velocity outflow observed nearly pole on. South of IRS9
we find a cold, protostellar condensation with a size of ~ 14" x 6" with a mass
> 250 Msun. This is the center of one of the outflows and shows deep,
red-shifted self absorption in HCO+, suggesting that there is a protostar
embedded in the core, still in a phase of active accretion. This source is not
detected in the far infrared, suggesting that the luminosity < 10^4 Lsun; yet
the mass of the outflow is ~ 60 Msun. The red-shifted HCO+ self-absorption
profiles observed toward the southern protostar and IRS9 predict accretion
rates of a few times 10^-4 to 10^-3 Msun/yr. Deep VLA continuum observations at
3.6 cm show that IRS9 coincides with a faint thermal VLA source, but no other
young star in the IRS9 region has any detectable free-free emission at a level
of ~ 60 microJy at 3.6 cm. The HCO+ abundance is significantly enhanced in the
hot IRS9 outflow. A direct comparison of mass estimates from HCO+ and CO for
the well-characterized red-shifted IRS9 outflow predicts an HCO+ enhancement of
more than a factor of 30, or [HCO+/H2] >= 6 10^-8.Comment: 40 pages, 3 tables and 10 figures included; to appear in Ap
High-Resolution spectroscopy of the low-mass X-ray binary EXO 0748-67
We present initial results from observations of the low-mass X-ray binary EXO
0748-67 with the Reflection Grating Spectrometer on board the XMM-Newton
Observatory. The spectra exhibit discrete structure due to absorption and
emission from ionized neon, oxygen, and nitrogen. We use the quantitative
constraints imposed by the spectral features to develop an empirical model of
the circumsource material. This consists of a thickened accretion disk with
emission and absorption in the plasma orbiting high above the binary plane.
This model presents challenges to current theories of accretion in X-ray binary
systems.Comment: 5 pages, 4 figures, accepted by A&A letters, XMM special issu
- âŠ