53 research outputs found

    Sarcomeric Pattern Formation by Actin Cluster Coalescence

    Get PDF
    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells

    Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS

    Get PDF
    A fast, easy-to-handle and cost-effective analytical method for 11 mycotoxins currently regulated in maize and other cereal-based food products in Europe was developed and validated for maize. The method is based on two extraction steps using different acidified acetonitrile–water mixtures. Separation is achieved using ultrahigh-performance liquid chromatography (UHPLC) by a linear water–methanol gradient. After electrospray ionisation, tandem mass spectrometric detection is performed in dynamic multiple reaction monitoring mode. Since accurate mass spectrometric quantification is hampered by matrix effects, uniformly [13C]-labelled mycotoxins for each of the 11 compounds were added to the sample extracts prior to UHPLC-MS/MS analysis. Method performance parameters were obtained by spiking blank maize samples with mycotoxins before as well as after extraction on six levels in triplicates. The twofold extraction led to total recoveries of the extraction steps between 97% and 111% for all target analytes, including fumonisins. The [13C]-labelled internal standards efficiently compensated all matrix effects in electrospray ionisation, leading to apparent recoveries between 88% and 105% with reasonable additional costs. The relative standard deviations of the whole method were between 4% and 11% for all analytes. The trueness of the method was verified by the measurement of several maize test materials with well-characterized concentrations. In conclusion, the developed method is capable of determining all regulated mycotoxins in maize and presuming similar matrix effects and extraction recovery also in other cereal-based foods

    Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    Get PDF
    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    From inert gas to fertilizer, fuel and fine chemicals: N2 reduction and fixation.

    No full text
    The 100th anniversary of a leading nitrogen fixation technology developer like CASALE SA is a reason to reflect over the 20th century successful solution of the problem of world food supply, and to look out for solutions for sustainable developments with respect to ammonia production. We review the role of nitrogen as essential chemical constituent in photosynthesis and biology, and component of ammonia as it is used as fertilizer for primary production by photosynthesis for farming and food supply and its future role as energy carrier. While novel synthesis methods and very advanced synchrotron based x-ray analytical techniques are being developed, we feel it is important to refer to the historical and economical context of nitrogen. The breaking of the N≡N triple bond remains a fundamental chemical and energetic problem in this context. We review the electrochemical ammonia synthesis as an energetically and environmentally benign method. Two relatively novel X-ray spectroscopy methods, which are relevant for the molecular understanding of the catalysts and biocatalysts, i.e. soft X-ray absorption spectroscopy and nuclear resonant vibration spectroscopy are presented. We illustrate the perceived reality in fertilizer usage on the field, and fertilizer production in the factory complex with photos and thus provide a contrast to the academic view of the molecular process of ammonia function and production

    No Effect of NGAL/lipocalin-2 on Aggressiveness of Cancer in the MMTV-PyMT/FVB/N Mouse Model for Breast Cancer

    Get PDF
    NGAL/lipocalin-2 is a siderophore-binding protein that is highly expressed in several cancers. It is suggested to confer a proliferative advantage to cancer cells. Its expression has been correlated with aggressiveness of breast cancer as determined both in patients and in mouse breast cancer models. This was recently confirmed in two mouse models of spontaneous breast cancer in wild-type and lipocalin-2-deficient mice. We used a similar strategy using a different mouse strain. Lipocalin-2-deficient mice and mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) mice were crossed into the same FVB/N background. All mice developed tumors by week 8. The mice were sacrificed on week 13 and tissue was processed for biochemical and histological analysis. The total tumor volume and number of metastases were quantitated in 26 lipocalin-2-deficient mice and 34 wild-type controls. Lipocalin-2 expression in tumors of MMTV-PyMT-positive and wild-type mice was assessed by quantitative real-time PCR and by immunohistochemistry. The expression of the lipocalin-2 receptors 24p3R and megalin and of Mmp-9, transferrin receptor, and Bdh2 (a producer of a mammalian siderophore) were quantitated by real-time PCR. No significant difference was observed between wild-type and lipocalin-2-deficient mice. Lipocalin-2 was highly expressed in tumors from wild-type mice, but the expression did not correlate with tumor size. No effect of lipocalin-2 was observed with respect to time to tumor appearance, total tumor volume, or to the number of metastases. Histology and gelatinolytic activity of the mammary tumors did not differ between wild-type and lipocalin-2-deficient mice. We conclude that NGAL/lipocalin-2 does not invariably affect the aggressiveness of breast cancers as assessed in mouse models, thus questioning the role of lipocalin-2 in cancer development
    corecore