43 research outputs found

    The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder.

    Get PDF
    Life-history theory assumes that reproduction entails a cost, and research on cooperatively breeding societies suggests that the cooperative sharing of workloads can reduce this cost. However, the physiological mechanisms that underpin both the costs of reproduction and the benefits of cooperation remain poorly understood. It has been hypothesized that reproductive costs may arise in part from oxidative stress, as reproductive investment may elevate exposure to reactive oxygen species, compromising survival and future reproduction and accelerating senescence. However, experimental evidence of oxidative costs of reproduction in the wild remains scarce. Here, we use a clutch-removal experiment to investigate the oxidative costs of reproduction in a wild cooperatively breeding bird, the white-browed sparrow weaver, Plocepasser mahali. Our results reveal costs of reproduction that are dependent on group size: relative to individuals in groups whose eggs were experimentally removed, individuals in groups that raised offspring experienced an associated cost (elevated oxidative damage and reduced body mass), but only if they were in small groups containing fewer or no helpers. Furthermore, during nestling provisioning, individuals that provisioned at higher rates showed greater within-individual declines in body mass and antioxidant protection. Our results provide rare experimental evidence that reproduction can negatively impact both oxidative status and body mass in the wild, and suggest that these costs can be mitigated in cooperative societies by the presence of additional helpers. These findings have implications for our understanding of the energetic and oxidative costs of reproduction, and the benefits of cooperation in animal societies.This study was funded by a BBSRC David Phillips Fellowship and a Royal Society Research Grant to A.J.Y. and an NERC studentship to D.L.C. J.D.B. was supported by a Royal Society University Research Fellowship.This is the final version of the article. It first appeared from Royal Society Publishing via http://dx.doi.org/10.1098/rspb.2015.203

    Immune response in a wild bird is predicted by oxidative status, but does not cause oxidative stress.

    Get PDF
    The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity

    Rank-related contrasts in longevity arise from extra-group excursions not delayed senescence in a cooperative mammal

    Get PDF
    In many cooperatively breeding animal societies, breeders outlive non-breeding subordinates, despite investing heavily in reproduction [1-3]. In eusocial insects, the extended lifespans of breeders arise from specialized slowed aging profiles [1], prompting suggestions that reproduction and dominance similarly defer aging in cooperatively breeding vertebrates, too [4-6]. Although lacking the permanent castes of eusocial insects, breeders of vertebrate societies could delay aging via phenotypic plasticity (similar rank-related changes occur in growth, neuroendocrinology, and behavior [7-10]), and such plastic deferment of aging may reveal novel targets for preventing aging-related diseases [11]. Here, we investigate whether breeding dominants exhibit extended longevity and delayed age-related physiological declines in wild cooperatively breeding meerkats. We show that dominants outlive subordinates but exhibit faster telomere attrition (a marker of cellular senescence and hallmark of aging [12]) and that in dominants (but not subordinates), rapid telomere attrition is associated with mortality. Our findings further suggest that, rather than resulting from specialized aging profiles, differences in longevity between dominants and subordinates are driven by subordinate dispersal forays, which become exponentially more frequent with age and increase subordinate mortality. These results highlight the need to critically examine the causes of rank-related longevity contrasts in other cooperatively breeding vertebrates, including social mole-rats, where they are currently attributed to specialized aging profiles in dominants [4]

    Reproductive conflict resolution in cooperative breeders

    Get PDF
    Female infanticide is common in animal societies where groups comprise multiple co-breeding females. To reduce the risk that their offspring are killed, mothers can synchronize breeding and pool offspring, making it hard for females to avoid killing their own young. However, female reproductive conflict does not invariably result in reproductive synchrony, and we lack a general hypothesis explaining the variation in conflict resolution strategies seen across species. Here, we investigate the fitness consequences of birth timing relative to other females and the prevalence of birth synchrony in cooperatively breeding Kalahari meerkats (Suricata suricatta). We show that, although there would be substantial benefits to females in synchronizing births and reducing their risk of infanticide, birth synchrony is rare. Since precise breeding synchrony has evolved in a related species with similar infanticidal female reproductive conflict, its absence in meerkats requires an evolutionary explanation. We therefore explore the costs and benefits of synchronizing breeding in two theoretical models, each of which contrasts synchrony with an alternative reproductive strategy: (i) breeding opportunistically and accepting fitness losses to infanticide or (ii) suppressing the reproduction of others to prevent infanticide. Our models show that the costs of synchrony constrain its development if subordinates breed infrequently, and that selection instead favors the suppression of subordinate reproduction by the dominant and opportunistic reproduction by subordinates. Together, our results suggest that the resolution of reproductive conflict in animal societies is shaped by differential breeding propensities among female group members, leading to divergent conflict resolution strategies even in closely related species.A European Research Council grant to T.C.-B. (#294494). A. J. was supported by a Henslow Fellowship jointly provided by the Cambridge Philosophical Society and Hughes Hall, Cambridge. The Kalahari Meerkat Project is supported by the Universities of Cambridge, Zurich and Pretoria.https://academic.oup.com/beheco2020-08-29hj2020Mammal Research InstituteZoology and Entomolog

    Reproductive conflict resolution in cooperative breeders

    Get PDF
    Female infanticide is common in animal societies where groups comprise multiple co-breeding females. To reduce the risk that their offspring are killed, mothers can synchronize breeding and pool offspring, making it hard for females to avoid killing their own young. However, female reproductive conflict does not invariably result in reproductive synchrony, and we lack a general hypothesis explaining the variation in conflict resolution strategies seen across species. Here, we investigate the fitness consequences of birth timing relative to other females and the prevalence of birth synchrony in cooperatively breeding Kalahari meerkats (Suricata suricatta). We show that, although there would be substantial benefits to females in synchronizing births and reducing their risk of infanticide, birth synchrony is rare. Since precise breeding synchrony has evolved in a related species with similar infanticidal female reproductive conflict, its absence in meerkats requires an evolutionary explanation. We therefore explore the costs and benefits of synchronizing breeding in two theoretical models, each of which contrasts synchrony with an alternative reproductive strategy: (i) breeding opportunistically and accepting fitness losses to infanticide or (ii) suppressing the reproduction of others to prevent infanticide. Our models show that the costs of synchrony constrain its development if subordinates breed infrequently, and that selection instead favors the suppression of subordinate reproduction by the dominant and opportunistic reproduction by subordinates. Together, our results suggest that the resolution of reproductive conflict in animal societies is shaped by differential breeding propensities among female group members, leading to divergent conflict resolution strategies even in closely related species.A European Research Council grant to T.C.-B. (#294494). A. J. was supported by a Henslow Fellowship jointly provided by the Cambridge Philosophical Society and Hughes Hall, Cambridge. The Kalahari Meerkat Project is supported by the Universities of Cambridge, Zurich and Pretoria.https://academic.oup.com/beheco2020-08-29hj2020Mammal Research InstituteZoology and Entomolog

    Safeguarding human–wildlife cooperation

    Get PDF
    Human–wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human–honeyguide and human–dolphin cooperation, but these are at risk of joining several inactive forms (including human–wolf and human–orca cooperation). Human–wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components—a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge—which face threats from ecological and cultural changes. To safeguard human–wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures. Please see AfricanHoneyguides.com/abstract-translations for Kiswahili and Portuguese translations of the abstract

    Safeguarding human–wildlife cooperation

    Get PDF
    Human–wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human–honeyguide and human–dolphin cooperation, but these are at risk of joining several inactive forms (including human–wolf and human–orca cooperation). Human–wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components—a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge—which face threats from ecological and cultural changes. To safeguard human–wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures

    Identification of Upper Respiratory Tract Pathogens Using Electrochemical Detection on an Oligonucleotide Microarray

    Get PDF
    Bacterial and viral upper respiratory infections (URI) produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD) on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae) and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluinza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format

    Data from: The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder

    No full text
    Life-history theory assumes that reproduction entails a cost, and research on cooperatively breeding societies suggests that the cooperative sharing of workloads can reduce this cost. However, the physiological mechanisms that underpin both the costs of reproduction and the benefits of cooperation remain poorly understood. It has been hypothesised that reproductive costs may arise in part from oxidative stress, as reproductive investment may elevate exposure to reactive oxygen species, compromising survival and future reproduction and accelerating senescence. However, experimental evidence of oxidative costs of reproduction in the wild remains scarce. Here, we use a clutch-removal experiment to investigate the oxidative costs of reproduction in a wild cooperatively breeding bird, the white-browed sparrow weaver, Plocepasser mahali. Our results reveal costs of reproduction that are dependent on group size: relative to individuals in groups whose eggs were experimentally removed, individuals in groups that raised offspring experienced an associated cost (elevated oxidative damage and reduced body mass), but only if they were in small groups containing fewer or no helpers. Furthermore, during nestling provisioning, individuals that provisioned at higher rates showed greater within-individual declines in body mass and antioxidant protection. Our results provide rare experimental evidence that reproduction can negatively impact both oxidative status and body mass in the wild, and suggest that these costs can be mitigated in cooperative societies by the presence of additional helpers. These findings have implications for our understanding of the energetic and oxidative costs of reproduction, and the benefits of cooperation in animal societies
    corecore