1,707 research outputs found

    NASTRAN as a resource in code development

    Get PDF
    A case history is presented in which the NASTRAN system provided both guidelines and working software for use in the development of a discrete element program, PATCHES-111. To avoid duplication and to take advantage of the wide spread user familiarity with NASTRAN, the PATCHES-111 system uses NASTRAN bulk data syntax, NASTRAN matrix utilities, and the NASTRAN linkage editor. Problems in developing the program are discussed along with details on the architecture of the PATCHES-111 parametric cubic modeling system. The system includes model construction procedures, checkpoint/restart strategies, and other features

    Effect of Cluster Formation on Isospin Asymmetry in the Liquid-Gas Phase Transition Region

    Full text link
    Nuclear matter within the liquid-gas phase transition region is investigated in a mean-field two-component Fermi-gas model. Following largely analytic considerations, it is shown that: (1) Due to density dependence of asymmetry energy, some of the neutron excess from the high-density phase could be expelled into the low-density region. (2) Formation of clusters in the gas phase tends to counteract this trend, making the gas phase more liquid-like and reducing the asymmetry in the gas phase. Flow of asymmetry between the spectator and midrapidity region in reactions is discussed and a possible inversion of the flow direction is indicated.Comment: 9 pages,3 figures, RevTe

    Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations

    Get PDF
    We use the Galaxies–Intergalactic Medium Interaction Calculation (GIMIC) suite of cosmological hydrodynamical simulations to study the global structure and kinematics of stellar spheroids of Milky Way mass disc galaxies. Font et al. have recently demonstrated that these simulations are able to successfully reproduce the satellite luminosity functions and the metallicity and surface brightness profiles of the spheroids of the Milky Way and M31. A key to the success of the simulations is a significant contribution to the spheroid from stars that formed in situ. While the outer halo is dominated by accreted stars, stars formed in the main progenitor of the galaxy dominate at r≲ 30 kpc. In the present study, we show that this component was primarily formed in a protodisc at high redshift and was subsequently liberated from the disc by dynamical heating associated with mass accretion. As a consequence of its origin, the in situ component of the spheroid has different kinematics (namely net prograde rotation with respect to the disc) than that of the spheroid component built from the disruption of satellites. In addition, the in situ component has a flattened distribution, which is due in part to its rotation. We make comparisons with measurements of the shape and kinematics of local galaxies, including the Milky Way and M31, and stacked observations of more distant galaxies. We find that the simulated disc galaxies have spheroids of the correct shape (oblate with a median axial ratio of ∼0.6 at radii of ≲30 kpc, but note there is significant system-to-system scatter in this quantity) and that the kinematics show evidence for two components (due to in situ versus accreted), as observed. Our findings therefore add considerable weight to the importance of dissipative processes in the formation of stellar haloes and to the notion of a ‘dual stellar halo’

    Enriching the hot circumgalactic medium

    Get PDF
    Simple models of galaxy formation in a cold darkmatter universe predict that massive galaxies are surrounded by a hot, quasi-hydrostatic circumgalactic corona of slowly cooling gas, predominantly accreted from the intergalactic medium (IGM). This prediction is borne out by the recent cosmological hydrodynamical simulations of Crain et al., which reproduce observed scaling relations between the X-ray and optical properties of nearby disc galaxies. Such coronae are metal poor, but observations of the X-ray emitting circumgalactic medium (CGM) of local galaxies typically indicate enrichment to near-solar iron abundance, potentially signalling a shortcoming in current models of galaxy formation.We show here that, while the hotCGMof galaxies formed in the simulations is typically metal poor in a mass-weighted sense, its X-ray luminosity-weighted metallicity is often close to solar. This bias arises because the soft X-ray emissivity of a typical ∼0.1 keV corona is dominated by collisionally excited metal ions that are synthesized in stars and recycled into the hot CGM. We find that these metals are ejected primarily by stars that form in situ to the main progenitor of the galaxy, rather than in satellites or external galaxies. The enrichment of the hot CGM therefore proceeds in an ‘inside–out’ fashion throughout the assembly of the galaxy: metals are transported from the central galaxy by supernova-driven winds and convection over several Gyr, establishing a strong negative radial metallicity gradient. Whilst metal ions synthesized by stars are necessary to produce the X-ray emissivity that enables the hot CGM of isolated galaxies to be detected with current instrumentation, the electrons that collisionally excite them are equally important. Since our simulations indicate that the electron density of hot coronae is dominated by the metal-poor gas accreted from the IGM, we infer that the hot CGM observed via X-ray emission is the outcome of both hierarchical accretion and stellar recycling

    The flow of plasma in the solar terrestrial environment

    Get PDF
    The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence

    Procalcitonin guided antibiotic therapy and hospitalization in patients with lower respiratory tract infections: a prospective, multicenter, randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>Lower respiratory tract infections like acute bronchitis, exacerbated chronic obstructive pulmonary disease and community-acquired pneumonia are often unnecessarily treated with antibiotics, mainly because of physicians' difficulties to distinguish viral from bacterial cause and to estimate disease-severity. The goal of this trial is to compare medical outcomes, use of antibiotics and hospital resources in a strategy based on enforced evidence-based guidelines versus procalcitonin guided antibiotic therapy in patients with lower respiratory tract infections.</p> <p>Methods and design:</p> <p>We describe a prospective randomized controlled non-inferiority trial with an open intervention. We aim to randomize over a fixed recruitment period of 18 months a minimal number of 1002 patients from 6 hospitals in Switzerland. Patients must be >18 years of age with a lower respiratory tract infections <28 days of duration. Patients with no informed consent, not fluent in German, a previous hospital stay within 14 days, severe immunosuppression or chronic infection, intravenous drug use or a terminal condition are excluded. Randomization to either guidelines-enforced management or procalcitonin-guided antibiotic therapy is stratified by centre and type of lower respiratory tract infections. During hospitalization, all patients are reassessed at days 3, 5, 7 and at the day of discharge. After 30 and 180 days, structured phone interviews by blinded medical students are conducted. Depending on the randomization allocation, initiation and discontinuation of antibiotics is encouraged or discouraged based on evidence-based guidelines or procalcitonin cut off ranges, respectively. The primary endpoint is the risk of combined disease-specific failure after 30 days. Secondary outcomes are antibiotic exposure, side effects from antibiotics, rate and duration of hospitalization, time to clinical stability, disease activity scores and cost effectiveness. The study hypothesis is that procalcitonin-guidance is non-inferior (i.e., at worst a 7.5% higher combined failure rate) to the management with enforced guidelines, but is associated with a reduced total antibiotic use and length of hospital stay.</p> <p>Discussion:</p> <p>Use of and prolonged exposure to antibiotics in lower respiratory tract infections is high. The proposed trial investigates whether procalcitonin-guidance may safely reduce antibiotic consumption along with reductions in hospitalization costs and antibiotic resistance. It will additionally generate insights for improved prognostic assessment of patients with lower respiratory tract infections.</p> <p>Trial registration:</p> <p>ISRCTN95122877</p

    The origin of the α-enhancement of massive galaxies Show affiliations

    Get PDF
    We study the origin of the stellar α-element-to-iron abundance ratio, [α/Fe]*, of present-day central galaxies, using cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project. For galaxies with stellar masses of M* > 1010.5 M⊙, [α/Fe]* increases with increasing galaxy stellar mass and age. These trends are in good agreement with observations of early-type galaxies, and are consistent with a ‘downsizing’ galaxy formation scenario: more massive galaxies have formed the bulk of their stars earlier and more rapidly, hence from an interstellar medium that was mostly α-enriched by massive stars. In the absence of feedback from active galactic nuclei (AGNs), however, [α/Fe]* in M* > 1010.5 M⊙ galaxies is roughly constant with stellar mass and decreases with mean stellar age, extending the trends found for lower mass galaxies in both simulations with and without AGN. We conclude that AGN feedback can account for the α-enhancement of massive galaxies, as it suppresses their star formation, quenching more massive galaxies at earlier times, thereby preventing the iron from longer lived intermediate-mass stars (supernova Type Ia) from being incorporated into younger stars

    The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation

    Get PDF
    We use the Evolution and Assembly of GaLaxies and their Environments (EAGLE) galaxy formation simulation to study the effects of baryons on the power spectrum of the total matter and dark matter distributions and on the velocity fields of dark matter and galaxies. On scales k ≳ 4 h Mpc−1 the effect of baryons on the amplitude of the total matter power spectrum is greater than 1 per cent. The back-reaction of baryons affects the density field of the dark matter at the level of ∼3 per cent on scales of 1 ≤ k/( h Mpc−1) ≤ 5. The dark matter velocity divergence power spectrum at k ≲ 0.5 h Mpc−1 is changed by less than 1 per cent. The 2D redshift space power spectrum is affected at the level of ∼6 per cent at |k|≳1hMpc−1|k|≳1hMpc−1 (for μ > 0.5), but for |k|≤0.4hMpc−1|k|≤0.4hMpc−1 it differs by less than 1 per cent. We report vanishingly small baryonic velocity bias for haloes: the peculiar velocities of haloes with M200 > 3 × 1011 M⊙ (hosting galaxies with M* > 109 M⊙) are affected at the level of at most 1 km s−1, which is negligible for 1 per cent-precision cosmology. We caution that since EAGLE overestimates cluster gas fractions it may also underestimate the impact of baryons, particularly for the total matter power spectrum. Nevertheless, our findings suggest that for theoretical modelling of redshift space distortions and galaxy velocity-based statistics, baryons and their back-reaction can be safely ignored at the current level of observational accuracy. However, we confirm that the modelling of the total matter power spectrum in weak lensing studies needs to include realistic galaxy formation physics in order to achieve the accuracy required in the precision cosmology era

    Superimposed Infectious Colitis in Crohn’s Disease

    Get PDF
    The differential diagnosis for an acute Crohn’s flare should include enteric infection, a challenging yet critical distinction to make when determining appropriate therapy. Since both present similarly, identification of an enteric infection should be performed with comprehensive stool microbial testing. In the setting of moderate-to-severe disease, patients on biologic therapy may be more prone to infectious complications. We present a patient with chronic Crohn’s disease with an unusual, previously undetected enteric infection due to Plesiomonas shigelloides. Once identified, appropriate antibiotic treatment led to resolution of the patient’s acute symptomatology. This is the first reported case of P. shigelloides infection in Crohn’s disease
    • …
    corecore