21 research outputs found

    Transduction of Human CD34+CD38- Bone Marrow and Cord Blood-Derived SCID-Repopulating Cells with Third-Generation Lentiviral Vectors

    Get PDF
    The major limitations of Moloney murine leukemia virus (MoMLV)-based vectors for human stem cell applications, particularly those requiring bone marrow (BM) stem cells, include their requirement for mitosis and retroviral receptor expression. New vectors based upon lentiviruses such as HIV-1 exhibit properties that may circumvent these problems. We report that novel third-generation, self-inactivating lentiviral vectors, expressing enhanced green fluorescent protein (EGFP) and pseudotyped with vesicular stomatitis virus G glycoprotein (VSV-G), can efficiently transduce primitive human repopulating cells derived from human BM and cord blood (CB) tested by the SCID-repopulating cell (SRC) assay. Highly purified CD34+CD38- CB or BM cells were efficiently transduced (4-69%) and stably expressed in EGFP for 40 days in culture following infection for only 24 h without fibronectin, polybrene, or cytokines. Nonobese diabetic/severe combined immune-deficient (NOD/SCID) mice transplanted with transduced cells from either CB or BM donors were well engrafted, demonstrating maintenance of SRC during the infection procedure. Serially obtained femoral BM samples indicated that the proportion of EGFP+ cells within both myeloid and lymphoid lineages was maintained or even increased over time, averaging 42.3 ± 6.6% for BM donors and 23.3 ± 7.2% for CB at 12 weeks. Thus, the third-generation lentivectors readily transduce human CB and BM stem cells, under minimal conditions of ex vivo culture, where MoMLV-based vectors are ineffective. Since CB is inappropriate for most therapeutic applications, the efficient maintenance and transduction of BM-derived SRC during the short infection procedure are notable advantages of lentivectors

    Comparative Genomic Analysis of Clinical Strains of Campylobacter jejuni from South Africa

    Get PDF
    BACKGROUND: Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the post-infectious neuropathies, Guillain-Barré and Miller Fisher syndromes. In the Cape Town area of South Africa, C. jejuni strains with Penner heat-stable (HS) serotype HS:41 have been observed to be overrepresented among cases of Guillain-Barré syndrome. The present study examined the genetic content of a collection of 32 South African C. jejuni strains with different serotypes, including 13 HS:41 strains, that were recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. The sequence-based typing methods, multilocus sequence typing and DNA microarrays, were employed to potentially identify distinguishing features within the genomes of these C. jejuni strains with various disease outcomes. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomic analyses demonstrated that the HS:41 South African strains were clearly distinct from the other South African strains. Further DNA microarray analysis demonstrated that the HS:41 strains from South African patients with the Guillain-Barré syndrome or enteritis were highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements (CJIEs). Only the integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas this element was absent in two closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both integrated elements CJIE1 and CJIE2. CONCLUSION/SIGNIFICANCE: These findings demonstrate that CJIEs may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may contribute to the genomic diversity of C. jejuni strains. This comparative genomic analysis of C. jejuni provides fundamental information that potentially could lead to improved methods for analyzing the epidemiology of disease outbreaks

    The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar

    Get PDF
    Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5+ organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3+/CD133+/CD26− in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah−/− mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination
    corecore