57 research outputs found

    Mapping canopy nitrogen-scapes to assess foraging habitat for a vulnerable arboreal folivore in mixed-species Eucalyptus forests

    Get PDF
    Herbivore foraging decisions are closely related to plant nutritional quality. For arboreal folivores with specialized diets, such as the vulnerable greater glider (Petauroides volans), the abundance of suitable forage trees can influence habitat suitability and species occurrence. The ability to model and map foliar nitrogen would therefore enhance our understanding of folivore habitat use at finer scales. We tested whether high-resolution multispectral imagery, collected by a lightweight and low-cost commercial unoccupied aerial vehicle (UAV), could be used to predict total and digestible foliar nitrogen (N and digN) at the tree canopy level and forest stand-scale from leaf-scale chemistry measurements across a gradient of mixed-species Eucalyptus forests in southeastern Australia. We surveyed temperate Eucalyptus forests across an elevational and topographic gradient from sea level to high elevation (50–1200 m a.s.l.) for forest structure, leaf chemistry, and greater glider occurrence. Using measures of multispectral leaf reflectance and spectral indices, we estimated N and digN and mapped N and favorable feeding habitat using machine learning algorithms. Our surveys covered 17 Eucalyptus species ranging in foliar N from 0.63% to 1.92% dry matter (DM) and digN from 0.45% to 1.73% DM. Both multispectral leaf reflectance and spectral indices were strong predictors for N and digN in model cross-validation. At the tree level, 79% of variability between observed and predicted measures of nitrogen was explained. A spatial supervised classification model correctly identified 80% of canopy pixels associated with high N concentrations (≥1% DM). We developed a successful method for estimating foliar nitrogen of a range of temperate Eucalyptus species using UAV multispectral imagery at the tree canopy level and stand scale. The ability to spatially quantify feeding habitat using UAV imagery allows remote assessments of greater glider habitat at a scale relevant to support ground surveys, management, and conservation for the vulnerable greater glider across southeastern Australia

    Carbon Sequestration in Managed Temperate Coniferous Forests Under Climate Change

    Get PDF
    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper–Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities

    A Common Anterior Insula Representation of Disgust Observation, Experience and Imagination Shows Divergent Functional Connectivity Pathways

    Get PDF
    Similar brain regions are involved when we imagine, observe and execute an action. Is the same true for emotions? Here, the same subjects were scanned while they (a) experience, (b) view someone else experiencing and (c) imagine experiencing gustatory emotions (through script-driven imagery). Capitalizing on the fact that disgust is repeatedly inducible within the scanner environment, we scanned the same participants while they (a) view actors taste the content of a cup and look disgusted (b) tasted unpleasant bitter liquids to induce disgust, and (c) read and imagine scenarios involving disgust and their neutral counterparts. To reduce habituation, we inter-mixed trials of positive emotions in all three scanning experiments. We found voxels in the anterior Insula and adjacent frontal operculum to be involved in all three modalities of disgust, suggesting that simulation in the context of social perception and mental imagery of disgust share a common neural substrates. Using effective connectivity, this shared region however was found to be embedded in distinct functional circuits during the three modalities, suggesting why observing, imagining and experiencing an emotion feels so different

    Interoception in anxiety and depression

    Get PDF
    We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Putting ourselves in another’s skin: using the plasticity of self-perception to enhance empathy and decrease prejudice

    Get PDF
    The self is one the most important concepts in social cognition and plays a crucial role in determining questions such as which social groups we view ourselves as belonging to and how we relate to others. In the past decade, the self has also become an important topic within cognitive neuroscience with an explosion in the number of studies seeking to understand how different aspects of the self are represented within the brain. In this paper, we first outline the recent research on the neurocognitive basis of the self and highlight a key distinction between two forms of self-representation. The first is the “bodily” self, which is thought to be the basis of subjective experience and is grounded in the processing of sensorimotor signals. The second is the “conceptual” self, which develops through our interactions of other and is formed of a rich network of associative and semantic information. We then investigate how both the bodily and conceptual self are related to social cognition with an emphasis on how self-representations are involved in the processing and creation of prejudice. We then highlight new research demonstrating that the bodily and conceptual self are both malleable and that this malleability can be harnessed in order to achieve a reduction in social prejudice. In particular, we will outline strong evidence that modulating people’s perceptions of the bodily self can lead to changes in attitudes at the conceptual level. We will highlight a series of studies demonstrating that social attitudes towards various social out-groups (e.g. racial groups) can lead to a reduction in prejudice towards that group. Finally, we seek to place these findings in a broader social context by considering how innovations in virtual reality technology can allow experiences of taking on another’s identity are likely to become both more commonplace and more convincing in the future and the various opportunities and risks associated with using such technology to reduce prejudice

    Global Drivers and Tradeoffs of Three Urban Vegetation Ecosystem Services

    No full text
    <div><p>Our world is increasingly urbanizing which is highlighting that sustainable cities are essential for maintaining human well-being. This research is one of the first attempts to globally synthesize the effects of urbanization on ecosystem services and how these relate to governance, social development and climate. Three urban vegetation ecosystem services (carbon storage, recreation potential and habitat potential) were quantified for a selection of a hundred cities. Estimates of ecosystem services were obtained from the analysis of satellite imagery and the use of well-known carbon and structural habitat models. We found relationships between ecosystem services, social development, climate and governance, however these varied according to the service studied. Recreation potential was positively related to democracy and negatively related to population. Carbon storage was weakly related to temperature and democracy, while habitat potential was negatively related to democracy. We found that cities under 1 million inhabitants tended to have higher levels of recreation potential than larger cities and that democratic countries have higher recreation potential, especially if located in a continental climate. Carbon storage was higher in full democracies, especially in a continental climate, while habitat potential tended to be higher in authoritarian and hybrid regimes. Similar to other regional or city studies we found that the combination of environment conditions, socioeconomics, demographics and politics determines the provision of ecosystem services. Results from this study showed the existence of environmental injustice in the developing world.</p></div
    corecore