26 research outputs found

    BLA to vHPC Inputs Modulate Anxiety-Related Behaviors

    Get PDF
    The basolateral amygdala (BLA) and ventral hippocampus (vHPC) have both been implicated in mediating anxiety-related behaviors, but the functional contribution of BLA inputs to the vHPC has never been directly investigated. Here we show that activation of BLA-vHPC synapses acutely and robustly increased anxiety-related behaviors, while inhibition of BLA-vHPC synapses decreased anxiety-related behaviors. We combined optogenetic approaches with in vivo pharmacological manipulations and ex vivo whole-cell patch-clamp recordings to dissect the local circuit mechanisms, demonstrating that activation of BLA terminals in the vHPC provided monosynaptic, glutamatergic inputs to vHPC pyramidal neurons. Furthermore, BLA inputs exerted polysynaptic, inhibitory effects mediated by local interneurons in the vHPC that may serve to balance the circuit locally. These data establish a role for BLA-vHPC synapses in bidirectionally controlling anxiety-related behaviors in an immediate, yet reversible, manner and a model for the local circuit mechanism of BLA inputs in the vHPC.JPB FoundationPicower Institute for Learning and Memory (Innovation Fund)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.Picower Institute for Learning and MemoryMassachusetts Institute of Technology. Department of Brain and Cognitive SciencesSwiss National Science Foundation. Postdoctoral Fellowship for Prospective Researchers (PBSKP3_143586)Howard Hughes Medical Institute (Undergraduate Education Grant)MIT Summer Research Progra

    Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala

    Get PDF
    The basolateral amygdala (BLA) mediates associative learning for both fear and reward. Accumulating evidence supports the notion that different BLA projections distinctly alter motivated behavior, including projections to the nucleus accumbens (NAc), medial aspect of the central amygdala (CeM), and ventral hippocampus (vHPC). Although there is consensus regarding the existence of distinct subsets of BLA neurons encoding positive or negative valence, controversy remains regarding the anatomical arrangement of these populations. First, we map the location of more than 1,000 neurons distributed across the BLA and recorded during a Pavlovian discrimination task. Next, we determine the location of projection-defined neurons labeled with retrograde tracers and use CLARITY to reveal the axonal path in 3-dimensional space. Finally, we examine the local influence of each projection-defined populations within the BLA. Understanding the functional and topographical organization of circuits underlying valence assignment could reveal fundamental principles about emotional processing. Basolateral amygdala (BLA) neurons distinctly encode cues predicting rewards or punishments, but how does form give rise to function? Beyeler et al. overlay anatomical projection target, location of neurons in a 3D map, and encoding properties during cue discrimination. The influence on local networks differs across projection-defined BLA populations. Keywords: reward; aversion; topography; tracing; connectivity; network; channelrhodopsin; phototagging; photoexcitation; photoinhitionNational Institute of Mental Health (U.S.) (Grant R01-MH102441)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Award DP2-DK-102256

    Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval

    Get PDF
    Although the basolateral amygdala (BLA) is known to play a critical role in the formation of memories of both positive and negative valence, the coding and routing of valence-related information is poorly understood. Here, we recorded BLA neurons during the retrieval of associative memories and used optogenetic-mediated phototagging to identify populations of neurons that synapse in the nucleus accumbens (NAc), the central amygdala (CeA), or ventral hippocampus (vHPC). We found that despite heterogeneous neural responses within each population, the proportions of BLA-NAc neurons excited by reward predictive cues and of BLA-CeA neurons excited by aversion predictive cues were higher than within the entire BLA. Although the BLA-vHPC projection is known to drive behaviors of innate negative valence, these neurons did not preferentially code for learned negative valence. Together, these findings suggest that valence encoding in the BLA is at least partially mediated via divergent activity of anatomically defined neural populations.National Institute of Mental Health (U.S.) (Grant R01-MH102441-01)National Institutes of Health (U.S.) (Grant DP2-DK-102256-01

    Decoding Neural Circuits that Control Compulsive Sucrose Seeking

    Get PDF
    SummaryThe lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces “compulsive” sucrose seeking but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function, and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Decoding Neural Circuits that Control Compulsive Sucrose Seeking

    No full text
    The lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces “compulsive” sucrose seeking but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function, and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder.JPB FoundationWhitehall FoundationKlingenstein FoundationBrain & Behavior Research Foundation (Young Investigator Award)Alfred P. Sloan FoundationNational Institute of Mental Health (U.S.) (NIH R01-MH102441-01)National Institutes of Health (U.S.) (Director’s New Investigator Award DP2-DK-102256-01)National Science Foundation (U.S.). Graduate Research FellowshipIntegrative Neuronal Systems FellowshipTraining Program in the Neurobiology of Learning and MemoryMassachusetts Institute of Technology. Simons Center for the Social Brain (Postdoctoral Fellowship)Jeffrey and Nancy Halis FellowshipHenry E. Singleton FundJames R. Killian FellowshipNWO of the Netherlands (Rubicon Award

    A light- and calcium-gated transcription factor for imaging and manipulating activated neurons

    No full text
    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high-to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- A nd motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.Massachusetts Institute of TechnologyStanford UniversityJPB FoundationPicower Institute for Learning and Memory (Engineering Award)National Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (Director's New Innovator Award DP2-DK-102256-01
    corecore