18 research outputs found
Retaining Residual Ovarian Tissue following Ovarian Failure Has Limited Influence on Bone Loss in Aged Mice
Previous work showed that retaining residual ovarian tissue protects young mice from accelerated bone loss following ovarian failure. The present study was designed to determine whether this protection is also present in aged animals. Aged (9–12 months) C57BL/6Hsd female mice were divided into: CON (vehicle), VCD (160 mg/kg; 15d), or OVX (ovariectomized). Lumbar BMD was monitored by DXA and μCT used to assess vertebral microarchitecture. BMD was not different between VCD and CON at any time point but was lower (P < .05) than baseline, starting 1 month after ovarian failure in VCD and OVX mice. Following μCT analysis there were no differences between CON and VCD, but OVX mice had lower bone volume fraction, trabecular thickness, and a trend for decreased connectivity density. These findings provide evidence that retention of residual ovarian tissue may protect aged follicle-depleted mice from accelerated bone loss to a lesser extent than that observed in young mice
Recommended from our members
Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary
Phthalates have a history of reproductive toxicity in animal models and associations with adverse reproductive outcomes in women. Human exposure to dibutyl phthalate (DBP) occurs via consumer products (7-10 mu g/kg/day) and medications (1-233 mu g/kg/day). Most DBP toxicity studies have focused on high supraphysiological exposure levels; thus, very little is known about exposures occurring at environmentally relevant levels. CD-1 female mice (80 days old) were treated with tocopherol-stripped corn oil (vehicle control) or DBP dissolved in oil at environmentally relevant (10 and 100 mu g/kg/day) or higher (1000 mu g/kg/day) levels for 30 days to evaluate effects on DNA damage response (DDR) pathway genes and folliculogenesis. DBP exposure caused dose-dependent effects on folliculogenesis and gene expression. Specifically, animals exposed to the high dose of DBP had more atretic follicles in their ovaries, while in those treated with environmentally relevant doses, follicle numbers were no different from vehicle-treated controls. DBP exposure significantly reduced the expression of DDR genes including those involved in homologous recombination (Atm, Brca1, Mre11a, Rad50), mismatch repair (Msh3, Msh6), and nucleotide excision repair (Xpc, Pcna) in a dose-specific manner. Interestingly, staining for the DNA damage marker, gamma H2AX, was similar between treatments. DBP exposure did not result in differential DNA methylation in the Brca1 promoter but significantly reduced transcript levels for the maintenance DNA methyltransferase, Dnmt1, in the ovary. Collectively, these findings show that oral exposure to environmentally relevant levels of DBP for 30 days does not significantly impact folliculogenesis in adult mice but leads to aberrant ovarian expression of DDR genes. Summary Sentence Exposure to human relevant doses of dibutyl phthalate results in significant disruption of DNA damage repair gene expression in the mouse ovary.12 month embargo; published online: 4 October 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Data on the activity of DNA methyltransferase in the uteri of CD-1 mice exposed to dibutyl phthalate
Phthalates are industrial chemicals used as plasticizers in food packaging, medical devices, and toys, as well as cosmetics used primarily by women. Epidemiological studies in women and animal studies using rodents have reported associations between phthalate exposures and adverse reproductive health outcomes. Epigenetic mechanisms are thought to be involved in the ability of environmental contaminants to influence development of disease but evidence linking exposure to phthalates and uterine DNA methyltransferase activity are lacking. This article reports the activity of DNA methyltransferase (DNMT) enzymes in uteri from CD-1 mice treated with or without dibutyl phthalate (DBP), a phthalate commonly found in the urine of women of reproductive age. CD-1 mice were orally dosed with tocopherol-stripped corn oil (vehicle) or DBP at 10 mu g/kg/day, 100 mu g/kg/day and 1000 mg/kg/day daily for 10, 20, and 30 days. These dosages were selected based on estimates of human intake previously reported (10 and 100 mg/kg/day) and included a high dose (1000 mg/kg/day) for comparison with classical toxicity studies. At the end of 10, 20 or 30 days of daily oral dosing, animals were euthanized within 1-2 hours after the final dose. DNMT activity was determined by subjecting uterine nuclear extracts to a commercially-available DNMT activity ELISA assay and measuring optical density with a microplate spectrophotometer at a wavelength of 450 nm. Graph Pad Prism 8 was used for data analysis to determine the activity of DNMT enzymes at different time points and doses versus vehicle. The data presented serves as a resource for researchers working in the field of toxicology because it addresses a gap in knowledge of how exposure to environmental factors such as phthalate esters could produce epigenetic alterations in the uterus, which consequently may increase the risk of developing reproductive disease. (C) 2019 The Author(s). Published by Elsevier Inc.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Human-relevant exposure to di-n-butyl phthalate tampers with the ovarian insulin-like growth factor 1 system and disrupts folliculogenesis in young adult mice
Phthalates are compounds used in consumer and medical products worldwide. Phthalate exposure in women has been demonstrated by detection of phthalate metabolites in their urine and ovarian follicular fluid. High urinary phthalate burden has been associated with reduced ovarian reserve and oocyte retrieval in women undergoing assisted reproduction. Unfortunately, no mechanistic explanation for these associations is available. In short term in vivo and in vitro animal studies modeling human-relevant exposures to di-n-butyl phthalate (DBP), we have identified ovarian folliculogenesis as a target for phthalate exposures. In the present study, we investigated whether DBP exposure negatively influences insulin-like growth factor 1 (IGF1) signaling in the ovary and disrupts ovarian folliculogenesis. CD-1 female mice were exposed to corn oil (vehicle) or DBP (10 µg/kg/day, 100 µg/kg/day, or 1000 mg/kg/day) for 20-32 days. Ovaries were collected as animals reached the proestrus stage to achieve estrous cycle synchronization. Levels of mRNAs encoding IGF1 and 2 (Igf1 and Igf2), IGF1 receptor (Igf1r), and IGF-binding proteins 1-6 (Ifgbp1-6) were measured in whole ovary homogenates. Ovarian follicle counts and immunostaining for phosphorylated IGF1R protein (pIGF1R) were used to evaluate folliculogenesis and IGF1R activation, respectively. DBP exposure, at a realistic dose that some women may experience (100 µg/kg/day for 20-32 days), reduced ovarian Igf1 and Igf1r mRNA expression and reduced small ovarian follicle numbers and primary follicle pIGF1R positivity in DBP-treated mice. These findings reveal that DBP tampers with the ovarian IGF1 system and provide molecular insight into how phthalates could influence the ovarian reserve in females.12 month embargo; first published: 13 July 2023This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]