1,941 research outputs found

    Primed to be inflexible: the influence of set size on cognitive flexibility during childhood

    Get PDF
    One of the hallmarks of human cognition is cognitive flexibility, the ability to adapt thoughts and behaviors according to changing task demands. Previous research has suggested that the number of different exemplars that must be processed within a task (the set size) can influence an individual’s ability to switch flexibly between different tasks. This paper provides evidence that when tasks have a small set size, children’s cognitive flexibility is impaired compared to when tasks have a large set size. This paper also offers insights into the mechanism by which this effect comes about. Understanding how set size interacts with task-switching informs the debate regarding the relative contributions of bottom-up priming and top-down control processes in the development of cognitive flexibility. We tested two accounts for the relationship between set size and cognitive flexibility: the (bottom-up) Stimulus-Task Priming account and the (top-down) Rule Representation account. Our findings offered support for the Stimulus-Task Priming account, but not for the Rule Representation account. They suggest that children are susceptible to bottom-up priming caused by stimulus repetition, and that this priming can impair their ability to switch between tasks. These findings make important theoretical and practical contributions to the executive function literature: Theoretically, they show that the basic features of a task exert a significant influence on children’s ability to flexibly shift between tasks through bottom-up priming effects. Practically, they suggest that children’s cognitive flexibility may have been underestimated relative to adults’, as paradigms used with children typically have a smaller set size than those used with adults. These findings also have applications in education, where they have the potential to inform teaching in key areas where cognitive flexibility is required, such as mathematics and literacy

    A Complex Chemical Potential: Signature of Decay in a Bose-Einstein Condensate

    Full text link
    We explore the zero-temperature statics of an atomic Bose-Einstein condensate in which a Feshbach resonance creates a coupling to a second condensate component of quasi-bound molecules. Using a variational procedure to find the equation of state, the appearance of this binding is manifest in a collapsing ground state, where only the molecular condensate is present up to some critical density. Further, an excited state is seen to reproduce the usual low-density atomic condensate behavior in this system, but the molecular component is found to produce an underlying decay, quantified by the imaginary part of the chemical potential. Most importantly, the unique decay rate dependencies on density (ρ3/2\sim \rho ^{3/2}) and on scattering length (a5/2\sim a^{5/2}) can be measured in experimental tests of this theory.Comment: 4 pages, 1 figur

    12.2-GHz methanol maser MMB follow-up catalogue - II. Longitude range 186 to 330 degrees

    Full text link
    We present the second portion of a catalogue of 12.2-GHz methanol masers detected towards 6.7-GHz methanol masers observed in the unbiased Methanol Multibeam (MMB) Survey. Using the Parkes radio telescope we have targeted all 207 6.7-GHz methanol masers in the longitude range 186 to 330 degrees for 12.2-GHz counterparts. We report the detection of 83 12.2-GHz methanol masers, and one additional source which we suspect is thermal emission, equating to a detection rate of 40 per cent. Of the 83 maser detections, 39 are reported here for the first time. We discuss source properties, including variability and highlight a number of unusual sources. We present a list of 45 candidates that are likely to harbor methanol masers in the 107.0-GHz transition.Comment: Accepted MNRAS 19 July 201

    Multi-transition study and new detections of class II methanol masers

    Get PDF
    We have used the ATNF Mopra antenna and the SEST antenna to search in the directions of several class II methanol maser sources for emission from six methanol transitions in the frequency range 85-115 GHz. The transitions were selected from excitation studies as potential maser candidates. Methanol emission at one or more frequencies was detected from five of the maser sources, as well as from Orion KL. Although the lines are weak, we find evidence of maser origin for three new lines in G345.01+1.79, and possibly one new line in G9.62+0.20. The observations, together with published maser observations at other frequencies, are compared with methanol maser modelling for G345.01+1.79 and NGC6334F. We find that the majority of observations in both sources are consistent with a warm dust (175 K) pumping model at hydrogen density ~10^6 cm^-3 and methanol column density ~5 x 10^17 cm^-2. The substantial differences between the maser spectra in the two sources can be attributed to the geometry of the maser region.Comment: 13 pages, 6 figures, Accepted for publication in MNRA

    VLBI study of maser kinematics in high-mass SFRs. II. G23.01-0.41

    Full text link
    The present paper focuses on the high-mass star-forming region G23.01-0.41. Methods: Using the VLBA and the EVN arrays, we conducted phase-referenced observations of the three most powerful maser species in G23.01-0.41: H2O at 22.2 GHz (4 epochs), CH3OH at 6.7 GHz (3 epochs), and OH at 1.665 GHz (1 epoch). In addition, we performed high-resolution (> 0".1), high-sensitivity (< 0.1 mJy) VLA observations of the radio continuum emission from the HMC at 1.3 and 3.6 cm. Results: We have detected H2O, CH3OH, and OH maser emission clustered within 2000 AU from the center of a flattened HMC, oriented SE-NW, from which emerges a massive 12CO outflow, elongated NE-SW, extended up to the pc-scale. Although the three maser species show a clearly different spatial and velocity distribution and sample distinct environments around the massive YSO, the spatial symmetry and velocity field of each maser specie can be explained in terms of expansion from a common center, which possibly denotes the position of the YSO driving the maser motion. Water masers trace both a fast shock (up to 50 km/s) closer to the YSO, powered by a wide-angle wind, and a slower (20 km/s) bipolar jet, at the base of the large-scale outflow. Since the compact free-free emission is found offset from the putative location of the YSO along a direction consistent with that of the maser jet axis, we interpret the radio continuum in terms of a thermal jet. The velocity field of methanol masers can be explained in terms of a composition of slow (4 km/s in amplitude) motions of radial expansion and rotation about an axis approximately parallel to the maser jet. Finally, the distribution of line of sight velocities of the hydroxyl masers suggests that they can trace gas less dense (n(H2) < 10^6 cm^-3) and more distant from the YSO than that traced by the water and methanol masers, which is expanding toward the observer. (Abridged)Comment: 23 pages, 8 figures, 4 tables, accepted by Astronomy and Astrophysic

    12.2-GHz methanol maser MMB follow-up catalogue - I. Longitude range 330 to 10 degrees

    Full text link
    We present a catalogue of 12.2-GHz methanol masers detected towards 6.7-GHz methanol masers observed in the unbiased Methanol Multibeam (MMB) survey in the longitude range 330\circ (through 360\circ) to 10\circ. This is the first portion of the catalogue which, when complete, will encompass all of the MMB detections. We report the detection of 184 12.2-GHz sources towards 400 6.7-GHz methanol maser targets, equating to a detection rate of 46 per cent. Of the 184 12.2-GHz detections, 117 are reported here for the first time. We draw attention to a number of 'special' sources, particularly those with emission at 12.2-GHz stronger than their 6.7-GHz counterpart and conclude that these unusual sources are not associated with a specific evolutionary stage.Comment: accepted to MNRAS 21 Dec 201

    First Interferometric Images of the 36 GHz Methanol Masers in the DR21 Complex

    Full text link
    Class I methanol masers are believed to be produced in the shock-excited environment around star-forming regions. Many authors have argued that the appearance of various subsets of class I masers may be indicative of specific evolutionary stages of star formation or excitation conditions. Until recently, however, no major interferometer was capable of imaging the important 36 GHz transition. We report on Expanded Very Large Array observations of the 36 GHz methanol masers and Submillimeter Array observations of the 229 GHz methanol masers in DR21(OH), DR21N, and DR21W. The distribution of 36 GHz masers in the outflow of DR21(OH) is similar to that of the other class I methanol transitions, with numerous multitransition spatial overlaps. At the site of the main continuum source in DR21(OH), class I masers at 36 and 229 GHz are found in virtual overlap with class II 6.7 GHz masers. To the south of the outflow, the 36 GHz masers are scattered over a large region but usually do not appear coincident with 44 GHz masers. In DR21W we detect an "S-curve" signature in Stokes V that implies a large value of the magnetic field strength if interpreted as due to Zeeman splitting, suggesting either that class I masers may exist at higher densities than previously believed or that the direct Zeeman interpretation of S-curve Stokes V profiles in class I masers may be incorrect. We find a diverse variety of different maser phenomena in these sources, suggestive of differing physical conditions among them.Comment: 8 pages, accepted for publication in Ap

    Two-channel Kondo model as a generalized one-dimensional inverse square long-range Haldane-Shastry spin model

    Full text link
    Majorana fermion representations of the algebra associated with spin, charge, and flavor currents have been used to transform the two-channel Kondo Hamiltonian. Using a path integral formulation, we derive a reduced effective action with long-range impurity spin-spin interactions at different imaginary times. In the semiclassical limit, it is equivalent to a one-dimensional Heisenberg spin chain with two-spin, three-spin, etc. long-range interactions, as a generalization of the inverse-square long-range Haldane-Shastry spin model. In this representation the elementary excitations are "semions", and the non-Fermi-liquid low-energy properties of the two-channel Kondo model are recovered.Comment: 4 pages, no figure, to be published in J. Phys.: Condens. Matter, 200

    Magnetically Robust Non-Fermi Liquid Behavior in Heavy Fermion Systems with f^2-Configuration: Competition between Crystalline-Electric-Field and Kondo-Yosida Singlets

    Full text link
    We study a magnetic field effect on the Non-Fermi Liquid (NFL) which arises around the quantum critical point (QCP) due to the competition between the f^2-crystalline-electric-field singlet and the Kondo-Yosida singlet states by using the numerical renormalization ground method. We show the characteristic temperature T_F^*, corresponding to a peak of a specific heat, is not affected by the magnetic field up to H_z^* which is determined by the distance from the QCP or characteristic energy scales of each singlet states. As a result, in the vicinity of QCP, there are parameter regions where the NFL is robust against the magnetic field, at an observable temperature range T > T_F^*, up to H_z^* which is far larger than T_F^* and less than min(T_{K2}, $Delta).Comment: 8 pages, 9 figur
    corecore