488 research outputs found

    Modeling temperature distribution inside an emulsion fuel droplet under convective heating: A key to predicting microexplosion and puffing

    Get PDF
    © 2016 by Begell House, Inc. Microexplosion/puffing is rapid disintegration of a water-in-oil emulsion droplet caused by explosive boiling of embedded superheated water sub-droplets. To predict microexplosion/puffing, modeling the temperature distribution inside an emulsion droplet under convective heating is a prerequisite, since the temperature field determines the location of nucleation (vapor bubble initiation from superheated water). In the first part of the present study, convective heating of water-in-oil emulsion droplets under typical combustor conditions is investigated using high-fidelity simulation in order to accurately model inner-droplet temperature distribution. The shear force due to the ambient air flow induces internal circulation inside a droplet. It has been found that for droplets under investigation in the present study, the liquid Peclet number PeL is in a transitional regime of 100 < PeL < 500. The temperature field is therefore somewhat distorted by the velocity field, but the distortion is not strong enough to form Hill's vortex for the temperature field. In the second part of the present study, a novel approach is proposed to model the temperature field distortion by introducing angular dependency of the thermal conductivity and eccentricity of the temperature field. The model can reproduce the main features of the temperature field inside an emulsion droplet, and can be used to predict the nucleation location, which is a key initial condition of microexplosion/puffing

    Coherent phenomena in mesoscopic systems

    Full text link
    A mesoscopic system of cylindrical geometry made of a metal or a semiconductor is shown to exhibit features of a quantum coherent state. It is shown that magnetostatic interaction can play an important role in mesoscopic systems leading to an ordered ground state. The temperature TT^{*} below the system exhibits long-range order is determined. The self-consistent mean field approximation of the magnetostatic interaction is performed giving the effective Hamiltonian from which the self-sustaining currents can be obtained. The relation of quantum coherent state in mesoscopic cylinders to other coherent systems like superconductors is discussed.Comment: REVTeX, 4 figures, in print in Supercond. Sci. Techno

    Conductance of a tunnel point-contact of noble metals in the presence of a single defect

    Get PDF
    In paper [1] (Avotina et al. Phys. Rev. B,74, 085411 (2006)) the effect of Fermi surface anisotropy to the conductance of a tunnel point contact, in the vicinity of which a single point-like defect is situated, has been investigated theoretically. The oscillatory dependence of the conductance on the distance between the contact and the defect has been found for a general Fermi surface geometry. In this paper we apply the method developed in [1] to the calculation of the conductance of noble metal contacts. An original algorithm, which enables the computation of the conductance for any parametrically given Fermi surface, is proposed. On this basis a pattern of the conductance oscillations, which can be observed by the method of scanning tunneling microscopy, is obtained for different orientations of the surface for the noble metals.Comment: 8 pages, 5 figure

    Partners At Care Transitions (PACT). Exploring older peoples’ experiences of transitioning from hospital to home in the UK: protocol for an observation and interview study of older people and their families to understand patient experience and involvement in care at transitions

    Get PDF
    Introduction: Lengths of hospital inpatient stays have reduced. This benefits patients, who prefer to be at home, and hospitals, which can treat more people when stays are shorter. Patients may, however, leave hospital sicker, with ongoing care needs. The transition period from hospital to home, can be risky, particularly for older patients with complex health and social needs. Improving patient experience, especially through greater patient involvement, may improve outcomes for patients and is a key indicator of care quality and safety. In this research we aim to: capture the experiences of older patients and their families during the transition from hospital to home; and identify opportunities for greater patient involvement in care, particularly where this contributes to greater individual- and organisational-level resilience. Methods and Analysis: A ‘focused ethnography’ comprising observations, ‘Go-Along’ and semi-structured interviews will be used to capture patient and carer experiences during different points in the care transition from admission to 90 days after discharge. We will recruit 30 patients and their carers from six hospital departments across two NHS Trusts. Analysis of observations and interviews will use a Framework approach to identify themes to understand the experience of transitions and generate ideas about how patients could be more actively involved in their care. This will include exploring what ‘good’ care at transitions look like and seeking out examples of success, as well as recommendations for improvement. Ethics and dissemination: Ethical approval was received from the NHS Research Ethics Committee in Wales. The research findings will add to a growing body of knowledge about patient experience of transitions, in particular providing insight into the experiences of patients and carers throughout the transitions process, in ‘real time’. Importantly, the data will be used to inform the development of a patient-centred intervention to improve the quality and safety of transitions

    Theory of oscillations in the STM conductance resulting from subsurface defects (Review Article)

    Get PDF
    In this review we present recent theoretical results concerning investigations of single subsurface defects by means of a scanning tunneling microscope (STM). These investigations are based on the effect of quantum interference between the electron partial waves that are directly transmitted through the contact and the partial waves scattered by the defect. In particular, we have shown the possibility imaging the defect position below a metal surface by means of STM. Different types of subsurface defects have been discussed: point-like magnetic and non-magnetic defects, magnetic clusters in a nonmagnetic host metal, and non-magnetic defects in a s-wave superconductor. The effect of Fermi surface anisotropy has been analyzed. Also, results of investigations of the effect of a strong magnetic field to the STM conductance of a tunnel point contact in the presence of a single defect has been presented.Comment: 31 pages, 10 figuers Submitted to Low. Temp. Phy

    Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling

    Get PDF
    This is the post-print version of the final paper published in Fuel. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.In this work, the effects of a standard ultra-low sulphur diesel (ULSD) fuel and a new, ultra-clean synthetic GTL (gas-to-liquid) fuel on the performance, combustion and emissions of a single-cylinder, direct injection, diesel engine were studied under different operating conditions with addition of simulated reformer product gas, referred to as reformed EGR (REGR). For this purpose various levels of REGR of two different compositions were tested. Tests with standard EGR were also carried out for comparison. Experiments were performed at four steady state operating conditions and the brake thermal efficiency, combustion process and engine emission data are presented and discussed. In general, GTL fuel resulted in a higher brake thermal efficiency compared to ULSD but the differences depended on the engine condition and EGR/REGR level and composition. The combustion pattern was significantly modified when the REGR level was increased. Although the extent of the effects of REGR on emissions depended on the engine load, it can be generally concluded that an optimal combination of GTL and REGR significantly improved both NOx and smoke emissions. In some cases, NOx and smoke emission reductions of 75% and 60%, respectively, were achieved compared to operation with ULSD without REGR. This offers a great potential for engine manufacturers to meet the requirements of future emission regulations.Shell Global Solutions UK, the Government of Castilla-La Mancha (Spain) and the Royal Thai Government

    Little groups of irreps of O(3), SO(3), and the infinite axial subgroups

    Full text link
    Little groups are enumerated for the irreps and their components in any basis of O(3) and SO(3) up to rank 9, and for all irreps of C_{\infty}, Ch_{\infty h}, Cv_{\infty v}, D_{\infty} and Dh_{\infty h}. The results are obtained by a new chain criterion, which distinguishes massive (rotationally inequivalent) irrep basis functions and allows for multiple branching paths, and are verified by inspection. These results are relevant to the determination of the symmetry of a material from its linear and nonlinear optical properties and to the choices of order parameters for symmetry breaking in liquid crystals.Comment: 28 pages and 3 figure

    Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport

    Full text link
    We report on the study of the Fermi surface of the electron-doped cuprate superconductor Nd2x_{2-x}Cex_xCuO4_{4} by measuring the interlayer magnetoresistance as a function of the strength and orientation of the applied magnetic field. We performed experiments in both steady and pulsed magnetic fields on high-quality single crystals with Ce concentrations of x=0.13x=0.13 to 0.17. In the overdoped regime of x>0.15x > 0.15 we found both semiclassical angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas (SdH) oscillations. The combined AMRO and SdH data clearly show that the appearance of fast SdH oscillations in strongly overdoped samples is caused by magnetic breakdown. This observation provides clear evidence for a reconstructed multiply-connected Fermi surface up to the very end of the overdoped regime at x0.17x\simeq 0.17. The strength of the superlattice potential responsible for the reconstructed Fermi surface is found to decrease with increasing doping level and likely vanishes at the same carrier concentration as superconductivity, suggesting a close relation between translational symmetry breaking and superconducting pairing. A detailed analysis of the high-resolution SdH data allowed us to determine the effective cyclotron mass and Dingle temperature, as well as to estimate the magnetic breakdown field in the overdoped regime.Comment: 23 pages, 8 figure

    Complex magnetic ordering in the oxide selenide Sr2Fe3Se2O3

    Get PDF
    Sr2Fe3Se2O3 is a localised-moment iron oxide selenide in which two unusual coordinations for Fe2+ ions form two sublattices in a 2:1 ratio. In the paramagnetic region at room temperature the compound adopts the crystal structure first reported for Sr2Co3S2O3, crystallising in space group Pbam with a = 7.8121 Å, b = 10.2375 Å, c = 3.9939 Å and Z = 2. The sublattice occupied by two thirds of the iron ions (Fe2 site) is formed by a network of distorted mer-[FeSe3O3] octahedra linked via shared Se2 edges and O vertices forming layers, which connect to other layers by shared Se vertices. As shown by magnetometry, neutron powder diffraction and Mössbauer spectroscopy measurements, these moments undergo long range magnetic ordering below TN1 = 118 K, initially adopting a magnetic structure with a propagation vector (½–δ, 0, ½) (0 ≤ ≤ 0.1) which is incommensurate with the nuclear structure and described in the Pbam1’(a01/2)000s magnetic superspace group, until at 92 K (TINC) there is a first order lock-in transition to a structure in which these Fe2 moments form a magnetic structure with a propagation vector (½ , 0, ½) which may be modelled using a 2a × b × 2c expansion of the nuclear cell in space group 36.178 Bab21m (BNS notation). Below TN2 = 52 K the remaining third of the Fe2+ moments (Fe1 site) which are in a compressed trans-[FeSe4O2] octahedral environment undergo long range ordering, as is evident from the magnetometry, the Mössbauer spectra and the appearance of new magnetic Bragg peaks in the neutron diffractograms. The ordering of the second set of moments on the Fe1 sites results in a slight re-orientation of the majority moments on the Fe2 sites. The magnetic structure at 1.5 K is described by a 2a × 2b × 2c expansion of the nuclear cell in space group 9.40 Iab (BNS notation)
    corecore