1,398 research outputs found

    Synergism of He-3 acquisition with lunar base evolution

    Get PDF
    Researchers have discovered that the lunar surface contains a valuable fusion fuel element that is relatively scarce on Earth. This element, He-3, originates from the solar wind that has bombarded the surface of the Moon over geologic time. Mining operations to recover this resource would allow the by-product acquisition of hydrogen, water, carbon dioxide, carbon monoxide, methane, and nitrogen from the lunar surface with relatively minimal additional resource investment when compared to the costs to supply these resources from Earth. Two configurations for the He-3 mining system are discussed, and the impacts of these mining operations on a projected lunar base scenario are assessed. We conclude that the acquisition of He-3 is feasible with minimal advances in current state-of-the-art technologies and could support a terrestrial nuclear fusion power economy with the lowest hazard risk of any nuclear reaction known. Also, the availability of the by-products of He-3 acquisition from the Moon could significantly reduce the operational requirements of a lunar base and increase the commercialization potential of the base through consumable resupply of the lunar base itself, other components of the space infrastructure, and other space missions

    Obstruction theory on 8-manifolds

    Full text link
    This note gives a uniform, self-contained, and fairly direct approach to a variety of obstruction-theoretic problems on 8-manifolds. We give necessary and sufficient cohomological critera for the existence of almost complex and almost quaternionic structures on the tangent bundle and for the reduction of the structure group to U(3) by the homomorphism U(3) --> O(8) given by the Lie algebra representation of PU(3).Comment: 19 page

    “The Executive Branch Shall Construe”: The Canon of Constitutional Avoidance and the Presidential Signing Statement

    Get PDF
    This is the published version

    The WCSAR telerobotics test bed

    Get PDF
    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators

    World office yield spectrum 1H/2015

    Full text link

    Visible and infrared photocurrent enhancement in a graphene-silicon Schottky photodetector through surface-states and electric field engineering

    Get PDF
    The design of efficient graphene-silicon (GSi) Schottky junction photodetectors requires detailed understanding of the spatial origin of the photoresponse. Scanning-photocurrent-microscopy (SPM) studies have been carried out in the visible wavelengths regions only, in which the response due to silicon is dominant. Here we present comparative SPM studies in the visible (λ\lambda = 633nm) and infrared (λ\lambda = 1550nm) wavelength regions for a number of GSi Schottky junction photodetector architectures, revealing the photoresponse mechanisms for silicon and graphene dominated responses, respectively, and demonstrating the influence of electrostatics on the device performance. Local electric field enhancement at the graphene edges leads to a more than ten-fold increased photoresponse compared to the bulk of the graphene-silicon junction. Intentional design and patterning of such graphene edges is demonstrated as an efficient strategy to increase the overall photoresponse of the devices. Complementary simulations and modeling illuminate observed effects and highlight the importance of considering graphene's shape and pattern and device geometry in the device design

    Sensory substitution for space gloves and for space robots

    Get PDF
    Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch

    Assessing the risk of climate change for buildings: A comparison between multi-year and probabilistic reference year simulations

    Get PDF
    Copyright © 2011 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Building and Environment . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Building and Environment Vol. 46 (2011), DOI: 10.1016/j.buildenv.2010.12.018Given a changing climate, there is a need to provide data for future years so that practicing engineers can investigate the impact of climate change on particular designs and examine any risk the client might be exposed to. In addition, such files are of use to building scientists in developing generic solutions to problems such as elevated internal temperatures and poor thermal comfort. With the release of the UK Climate Projections (UKCP09) [1], and the publication of a methodology for the creation of probabilistic future reference years using the UKCP09 weather generator [2], it is possible to model future building performance. However, the collapse of the distribution of possibilities inherent in the UKCP09 method into a single reference year or a small number of reference years, potentially means the loss of most of the information about the potential range of the response of the building and of the risk occupants might be subject to. In this paper we model for the first time the internal conditions and energy use of a building with all 3000 example years produced by the UKCP09 weather generator in an attempt to study the full range of response and risk. The resultant histograms and cumulative distribution functions are then used to examine whether single reference years can be used to answer questions about response and risk under a changing climate, or whether a more probabilistic approach is unavoidable
    corecore