18 research outputs found
Effects of psychological stress on the emission of volatile organic compounds from the skin
International audienceThirty-five women were included in a clinical study to characterize the volatile organic compounds (VOCs) emitted by the skin during exposure to psychological stress. An original silicon-based polymeric phase was used for VOC sampling on the forehead before and after stress induction. Cognitive stress was induced using specialized software that included a chronometer for semantic and arithmetic tasks. Assessment of stress was monitored using a State-trait anxiety inventory questionnaire, analysis of participantsâ verbal expressions and clinical measurements. Identification and relative quantification of VOCs were performed by gas chromatography-mass spectrometry. Stress induction was validated by a significant increase in state-anxiety as indicated by the questionnaire, modifications in electrodermal activity measurements and the expression of stress verbatims. In parallel, a sebum production increase and a skin pH decrease were observed. A total of 198 VOCs with different potential sources were identified. They were categorized in 5 groups: probable cosmetic composition, VOCs produced by the body or its microbiota, environmental origin, and dietary intake. In our qualitative statistical approach, three VOCs were found to be correlated with stress induction and 14 compounds showed significance in the paired Wilcoxon test. Fatty-acyls derived from lipids were predominantly identified as well as ethylbenzenes
Physico-chemical dataset from an in situ mesocosm experiment simulating extreme climate events in Lake Geneva (MESOLAC)
International audienceThis dataset complement a previously published dataset [1] and corresponds to the physico-chemical parameters data series produced during the MESOLAC experimental project [2]. The presented dataset is composed of: 1. In situ profiles (0â3m) of temperature, conductivity, pH, dissolved oxygen (concentration and saturation). 2. In situ measurements of light spectral UV/VIS/IR irradiance (300â950 nm wavelength range) taken at 0, 0.25, 0.5, 1, 1.5, 2 and 2.5m. 3. Laboratory chemical analysis of samples collected at 0 and 2 m (conductivity, pH, total alkalinity, NH4, NO2, NO3, total and particulate nitrogen (Ntot, Npart), PO4, total and particulate phosphorus (Ptot, Ppart), total, organic particulate and total particulate carbon (Ctot, Cpart-org, Cpart-tot), Cl, SO4, SiO2. 4. Laboratory analysis of pigments extracted from samples collected at 0 and 2 m (Chla, Chlc, carotenoids, phaeopigments).The experimental design is the same as in Tran-Khac et al [1]. Briefly, it consisted of nine pelagic mesocosms (about 3000 L, 3m depth) deployed in July 2019 in Lake Geneva near the shore of Thonon les Bains (France) aiming to simulate predicted climate scenarios (i.e. extreme events) and assess the response of planktonic communities, ecosystem functioning and resilience.During the experiment, physical parameters were measured twice a week. At the same time, samples were collected at 0 and 2m of depth for subsequent chemical laboratory analyses. These data are presented in the dataset file, ordered by sampling event (numbered from S1 to S8), treatment (Control-C, High-H and Medium-M) and replicates (1 to 3). For each sampling point the measured parameters are listed in columns, missing data and values below the detection limit are marked as NA (not available).This data set aims to contribute to the understanding of the effect of environmental forcing on lake physico-chemical characteristics (such as temperature, oxygen and nutrient concentration) under simulated intense weather events. To a broader extent, the presented data can be used for a wide variety of applications, including monitoring of a large peri-alpine lake functioning under environmental stress and being included in further meta-analysis to generalise the effect of climate change on large lakes. The two complementary dataset differ in the acquired data and methods, temporal and spatial resolution. They complete each other in terms of physico-chemical characterization of the experimental treatments and together can allow comparison of the two different monitoring strategies (continuous vs punctual) during in situ experimental manipulations
Physico-chemical and high frequency monitoring dataset from mesocosm experiments simulating extreme climate events in lakes
We present two datasets composed of high frequency sensors data, vertical in situ profiles and laboratory chemical analysis data, acquired during two different aquatic mesocosm experiments performed at the OLA (âLong-term observation and experimentation for lake ecosystemsâ) facility at the UMR CARRTEL in Thonon les Bains, on the French shore of Lake Geneva. The DOMLAC experiment lasted 3 weeks (4-21 October 2021) and aimed to simulate predicted climate scenarios (i.e. extreme events such as storms and floods) by reproducing changes in quality and composition of lake subsidies and runoff by increased inputs of terrestrial organic matter. The PARLAC experiment lasted 3 weeks (5-23 September 2022) and aimed to simulate turbid storms by light reduction.The experimental setup consisted of nine inland polyester laminated tanks (2.1 m length, 2.1 m width and 1.1 m depth) with a total volume of approximately 4000 L and filled with water directly supplied from the lake at 4m depth. Both experimental design included three treatments each replicated three times. The DOMLAC experiment involved a control treatment (no treatment applied) and two treatments simulating allochthonous inputs from two different dissolved organic matter (DOM) extract from peat moss Sphagnum sp. (Peat-Moss treatment) and Phragmites australis (Phragmite treatment). The PARLAC experiment involved a control treatment (no treatment applied) and two treatments simulating two different intensity of light reduction. In the Medium treatment transmitted light was reduced to 70% and in the High treatment transmitted light was reduced to 15%.The datasets are composed of: 1. In situ measures from automated data loggers of temperature, conductivity, dissolved oxygen and CO2 acquired every 5 minutes at 0.1, 0.5 and 1 m depth (DOMLAC) and 0.5m (PARLAC) for the entire period of the experiment. 2. In situ profiles (0-1 m) of temperature, conductivity, pH, dissolved oxygen (concentration and saturation) acquired twice a week during the experiment. 3. In situ measures of light spectral UV/VIS/IR irradiance (300-950 nm wavelength range) taken in the air and at 0, 0.5 and 1 m twice a week on the same day of the profiles at point 2. 4. Laboratory chemical analysis of integrated samples taken twice a week on the same day of the in situ profiles at point 2 and 3 of conductivity, pH, total alkalinity, NO3, total and particulate nitrogen (Ntot, Npart), PO4, total and particulate phosphorus (Ptot, Ppart), total and particulate organic carbon (TOC, POC), Ca, K, Mg, Na, Cl, SO4 and SiO2. Only for DOMLAC also analyses of NH4, NO2 and dissolved organic carbon (DOC). 5. Laboratory analysis of pigments (Chla, Chlc, carotenoids, phaeopigments) extracted from samples collected at point 4. 6. Only for DOMLAC, specific absorbance on the range 600-200nm of DOM (i.e. <0.7 ”m) measured on samples collected at point 4.This dataset aims to contribute our understanding of how extreme climate events can alter lake subsidies and affect the regulation of ecosystem processes such as production, respiration, nutrient uptake and pigment composition. The data can be used for a wide range of applications as being included in meta-analysis aiming at generalising the effect of climate change on large lakes including simulating future scenarios in a broad range of geographical areas as we used different inputs of DOM leached from litters reproducing catchments characteristics typical of different latitudes, such as mostly dominated by large leaf forests and phragmites at middle latitude, and coniferous forests rich of peat mosses that spread along the water surface typical of Northern regions
X-ray Structure of the Human Karyopherin RanBP5, an Essential Factor for Influenza Polymerase Nuclear Trafficking
International audienceHere, we describe the crystal structures of two distinct isoforms of ligand-free human karyopherin RanBP5 and investigate its global propensity to interact with influenza A virus polymerase. Our results confirm the general architecture and mechanism of the IMB3 karyopherin-ÎČ subfamily whilst also highlighting differences with the yeast orthologue Kap121p. Moreover, our results provide insight into the structural flexibility of ÎČ-importins in the unbound state. Based on docking of a nuclear localisation sequence, point mutations were designed, which suppress influenza PA-PB1 subcomplex binding to RanBP5 in a binary protein complementation assay
The structure of the nucleoprotein of Influenza D shows that all Orthomyxoviridae nucleoproteins have a similar NPCORE, with or without a NPTAIL for nuclear transport
Abstract This paper focuses on the nucleoprotein (NP) of the newly identified member of the Orthomyxoviridae family, Influenza D virus. To date several X-ray structures of NP of Influenza A (A/NP) and B (B/NP) viruses and of infectious salmon anemia (ISA/NP) virus have been solved. Here we purified, characterized and solved the X-ray structure of the tetrameric D/NP at 2.4âĂ
resolution. The crystal structure of its core is similar to NP of other Influenza viruses. However, unlike A/NP and B/NP which possess a flexible amino-terminal tail containing nuclear localization signals (NLS) for their nuclear import, D/NP possesses a carboxy-terminal tail (D/NPTAIL). We show that D/NPTAIL harbors a bipartite NLS and designed C-terminal truncated mutants to demonstrate the role of D/NPTAIL for nuclear transport
Social relationship dynamics mediate climate impacts on income inequality: evidence from the Mexican Humboldt squid fishery
Abstract
Small-scale fisheries are critically important for livelihoods around the world, particularly in tropical regions. However, climate variability and anthropogenic climate change may seriously impact small-scale fisheries by altering the abundance and distribution of target species. Social relationships between fishery users, such as fish traders, can determine how each individual responds and is affected by changes in fisheries. These informal cooperative and competitive relationships provide access, support, and incentives for fishing and affect the distribution of benefits. Yet, individualsâ actions and impacts on individuals are often the primary focus of the economic analyses informing small-scale fisheriesâ formal management. This focus dismisses relevant social relationships. We argue that this leads to a disconnect between reality and its model representation used in formal management, which may reduce formal fisheries managementâs efficiency and efficacy and potentially trigger adverse consequences. Here, we examine this argument by comparing the predictions of a simple bioeconomic fishery model with those of a social-ecological model that incorporates the dynamics of cooperative relationships between fish traders. We illustrate model outcomes using an empirical case study in the Mexican Humboldt squid fishery. We find that (1) the social-ecological model with relationship dynamics substantially improves accuracy in predicting observed fishery variables to the simple bioeconomic model. (2) Income inequality outcomes are associated with changes in cooperative trade relationships. When environmental temperature is included in the model as a driver of species production dynamics, we find that climate-driven temperature variability drives a decline in catch that, in turn, reduce fishersâ income. We observe an offset of this loss in income by including cooperative relationships between fish traders (oligopoly) in the model. These relationships break down following species distribution changes and result in an increase in prices fishers receive. Finally, (3) our social-ecological model simulations show that the current fishery development program, which seeks to increase fishersâ income through an increase in domestic market demand, is supported by predictions from the simple bioeconomic model, may increase income inequality between fishers and traders. Our findings highlight the real and urgent need to re-think fisheries management models in the context of small-scale fisheries and climate change worldwide to encompass social relationship dynamics
Structural characterization of recombinant IAV polymerase reveals a stable complex between viral PA-PB1 heterodimer and host RanBP5.
International audienceThe genome of influenza A virus (IAV) comprises eight RNA segments (vRNA) which are transcribed and replicated by the heterotrimeric IAV RNA-dependent RNA-polymerase (RdRp). RdRp consists of three subunits (PA, PB1 and PB2) and binds both the highly conserved 3'- and 5'-ends of the vRNA segment. The IAV RdRp is an important antiviral target, but its structural mechanism has remained largely elusive to date. By applying a polyprotein strategy, we produced RdRp complexes and define a minimal human IAV RdRp core complex. We show that PA-PB1 forms a stable heterodimeric submodule that can strongly interact with 5'-vRNA. In contrast, 3'-vRNA recognition critically depends on the PB2 N-terminal domain. Moreover, we demonstrate that PA-PB1 forms a stable and stoichiometric complex with host nuclear import factor RanBP5 that can be modelled using SAXS and we show that the PA-PB1-RanPB5 complex is no longer capable of 5'-vRNA binding. Our results provide further evidence for a step-wise assembly of IAV structural components, regulated by nuclear transport mechanisms and host factor binding
Destabilization of the human REDâSMU1 splicing complex as a basis for host-directed antiinfluenza strategy
International audienceNew therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance