20,998 research outputs found

    Calculating the inherent visual structure of a landscape (inherent viewshed) using high-throughput computing

    Get PDF
    This paper describes a method of calculating the inherent visibility at all locations in a landscape (‘total viewshed’) by making use of redundant computer cycles. This approach uses a simplified viewshed program that is suitable for use within a distributed environment, in this case managed by the Condor system. Distributing the calculation in this way reduced the calculation time of our example from an estimated 34 days to slightly over 25 hours using a cluster of 43 workstations. Finally, we discuss the example ‘total viewshed’ raster for the Avebury region, and briefly highlight some of its implications

    On alpha stable distribution of wind driven water surface wave slope

    Full text link
    We propose a new formulation of the probability distribution function of wind driven water surface slope with an α\alpha-stable distribution probability. The mathematical formulation of the probability distribution function is given under an integral formulation. Application to represent the probability of time slope data from laboratory experiments is carried out with satisfactory results. We compare also the α\alpha-stable model of the water surface slopes with the Gram-Charlier development and the non-Gaussian model of Liu et al\cite{Liu}. Discussions and conclusions are conducted on the basis of the data fit results and the model analysis comparison.Comment: final version of the manuscript: 25 page

    Volumetric diffusers : pseudorandom cylinder arrays on a periodic lattice

    Get PDF
    Most conventional diffusers take the form of a surface based treatment, and as a result can only operate in hemispherical space. Placing a diffuser in the volume of a room might provide greater efficiency by allowing scattering into the whole space. A periodic cylinder array (or sonic crystal) produces periodicity lobes and uneven scattering. Introducing defects into an array, by removing or varying the size of some of the cylinders, can enhance their diffusing abilities. This paper applies number theoretic concepts to create cylinder arrays that have more even scattering. Predictions using a Boundary Element Method are compared to measurements to verify the model, and suitable metrics are adopted to evaluate performance. Arrangements with good aperiodic autocorrelation properties tend to produce the best results. At low frequency power is controlled by object size and at high frequency diffusion is dominated by lattice spacing and structural similarity. Consequently the operational bandwidth is rather small. By using sparse arrays and varying cylinder sizes, a wider bandwidth can be achieved

    Numerical Renormalization Group Study of non-Fermi-liquid State on Dilute Uranium Systems

    Full text link
    We investigate the non-Fermi-liquid (NFL) behavior of the impurity Anderson model (IAM) with non-Kramers doublet ground state of the f2^2 configuration under the tetragonal crystalline electric field (CEF). The low energy spectrum is explained by a combination of the NFL and the local-Fermi-liquid parts which are independent with each other. The NFL part of the spectrum has the same form to that of two-channel-Kondo model (TCKM). We have a parameter range that the IAM shows the −ln⁡T- \ln T divergence of the magnetic susceptibility together with the positive magneto resistance. We point out a possibility that the anomalous properties of Ux_xTh1−x_{1-x}Ru2_2Si2_2 including the decreasing resistivity with decreasing temperature can be explained by the NFL scenario of the TCKM type. We also investigate an effect of the lowering of the crystal symmetry. It breaks the NFL behavior at around the temperature, ή/10\delta /10, where ή\delta is the orthorhombic CEF splitting. The NFL behavior is still expected above the temperature, ή/10\delta/10.Comment: 25 pages, 12 figure

    Anomalous aging phenomena caused by drift velocities

    Full text link
    We demonstrate via several examples that a uniform drift velocity gives rise to anomalous aging, characterized by a specific form for the two-time correlation functions, in a variety of statistical-mechanical systems far from equilibrium. Our first example concerns the oscillatory phase observed recently in a model of competitive learning. Further examples, where the proposed theory is exact, include the voter model and the Ohta-Jasnow-Kawasaki theory for domain growth in any dimension, and a theory for the smoothing of sandpile surfaces.Comment: 7 pages, 3 figures. To appear in Europhysics Letter

    Simulating non-Markovian stochastic processes

    Get PDF
    We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical an efficient algorithm alike the Gillespie algorithm for Markovian processes, with the difference that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of non-exponential inter-event time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general as it can be implemented very easily in cases, like for delays coupled to the evolution of the system, where other algorithms do not work or need adapted versions, less efficient in computational terms.Comment: Improvement of the algorithm, new results, and a major reorganization of the paper thanks to our coauthors L. Lafuerza and R. Tora

    Measuring Polynomial Invariants of Multi-Party Quantum States

    Get PDF
    We present networks for directly estimating the polynomial invariants of multi-party quantum states under local transformations. The structure of these networks is closely related to the structure of the invariants themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Specifically, our networks estimate the invariants under local unitary (LU) transformations and under stochastic local operations and classical communication (SLOCC). Our networks can estimate the LU invariants for multi-party states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants for multi-qubit states. We analyze the statistical efficiency of our networks compared to methods based on estimating the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update

    Crystal Field Triplets: A New Route to Non-Fermi Liquid Physics

    Full text link
    A model for crystal field triplet ground states on rare earth or actinide ions with dipolar and quadrupolar couplings to conduction electrons is studied for the first time with renormalization group methods. The quadrupolar coupling leads to a new nontrivial, non-Fermi liquid fixed point, which survives in an intermediate valence Anderson model. The calculated magnetic susceptibility displays one parameter scaling, going as T−αT^{-\alpha} (α≈0.4\alpha \approx 0.4) at intermediate temperatures, reminiscent of the non-Fermi liquid alloy UCu_{5-x}Pd_x.Comment: 4 pages, 3 figures, REVTe

    Strong electron correlations in cobalt valence tautomers

    Full text link
    We have examined cobalt based valence tautomer molecules such as Co(SQ)2_2(phen) using density functional theory (DFT) and variational configuration interaction (VCI) approaches based upon a model Hamiltonian. Our DFT results extend earlier work by finding a reduced total energy gap (order 0.6 eV) between high temperature and low temperature states when we fully relax the coordinates (relative to experimental ones). Futhermore we demonstrate that the charge transfer picture based upon formal valence arguments succeeds qualitatively while failing quantitatively due to strong covalency between the Co 3dd orbitals and ligand pp orbitals. With the VCI approach, we argue that the high temperature, high spin phase is strongly mixed valent, with about 30 % admixture of Co(III) into the predominantly Co(II) ground state. We confirm this mixed valence through a fit to the XANES spectra. Moreover, the strong electron correlations of the mixed valent phase provide an energy lowering of about 0.2-0.3 eV of the high temperature phase relative to the low temperature one. Finally, we use the domain model to account for the extraordinarily large entropy and enthalpy values associated with the transition.Comment: 10 pages, 4 figures, submitted to J. Chem. Phy

    On the possible existence of short-period g-mode instabilities powered by nuclear burning shells in post-AGB H-deficient (PG1159-type) stars

    Get PDF
    We present a pulsational stability analysis of hot post-AGB H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log⁥Teff−log⁥g\log T_{\rm eff} - \log g diagram characterized by short-period gg-modes excited by the Ï”\epsilon-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long period gg-modes destabilized by the classical Îș\kappa-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. we study the particular case of VV 47, a pulsating planetary nebula nucleus that has been reported to exhibit a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical Îș\kappa-mechanism, while the observed short-period branch below ≈300\approx 300 s could correspond to modes triggered by the He-burning shell through the Ï”\epsilon-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period gg-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the Îș\kappa-mechanism and the Ï”\epsilon-mechanism of mode driving are simultaneously operating.Comment: 9 pages, 5 figures, 2 tables. To be published in The Astrophysical Journa
    • 

    corecore