448 research outputs found

    The effects of classic and variant infectious bursal disease viruses on lymphocyte populations in specific-pathogen-free White Leghorn chickens

    Get PDF
    Infectious bursal disease virus (IBDV) is a pathogen that primarily infects B lymphocytes in domestic avian species. This viral infection has been associated with immunosuppression, clinical disease/mortality, and enteric malabsorption effects. The purpose of this experiment was to compare the effects of a classic (USDA-STC) and a new variant IBDV (RB-4, known to induce primarily the enteric disease) on immune cell populations in lymphoid organs. Seventeen-dayold specific-pathogen-free (SPF) White Leghorn chickens were either not infected (control) or inoculated with either USDA-STC or RB-4 IBD viral isolate. On days 3 and 5 post-inoculation (PI), lymphoid tissues were collected to prepare cell suspensions for immunofluorescent staining and cell population analysis by flow cytometry. Portions of the tissues were snap frozen for immunohistochemistry to localize various immune cells and IBD virus in the tissues. Tissue homogenates were prepared to test for IBDV by quantitative MTT assay. Both the USDA-STC and RB-4 viruses greatly altered lymphocyte populations in the spleen and bursa. At 5 d PI, bursal B cells were approximately 25% and 60% of lymphocytes in chicks infected with USDA-STC and RB-4, respectively, whereas in control birds, B cells constituted 99% of bursal lymphocytes. This reduction in the proportions of bursal B cells was associated with an infiltration of T cells. In the spleen, IBDV infection also reduced the percentage of B cells and increased the percentage of T cells. The differential effects of classic and variant IBDV infection on immune cell populations in lymphoid organs may explain the differences in clinical effects induced by these viruse

    Unlocking the Keyhole - H2 and PAH emission from molecular clumps in the Keyhole Nebula

    Get PDF
    To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1-0 S(1) (2.122 um) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 um. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula in which the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it, and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from eta Car, are now being over-run by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around eta Car.Comment: 8 pages, 4 figures, to be published in MNRA

    Going With the Flow or Against the Grain? The Promise of Vegetation for Protecting Beaches, Dunes, and Barrier Islands From Erosion

    Get PDF
    Coastlines have traditionally been engineered to maintain structural stability and to protect property from storm‐related damage, but their ability to endure will be challenged over the next century. The use of vegetation to reduce erosion on ocean‐facing mainland and barrier island shorelines – including the sand dunes and beaches on these islands – could be part of a more flexible strategy. Although there is growing enthusiasm for using vegetation for this purpose, empirical data supporting this approach are lacking. Here, we identify the potential roles of vegetation in coastal protection, including the capture of sediment, ecological succession, and the building of islands, dunes, and beaches; the development of wave‐resistant soils by increasing effective grain size and sedimentary cohesion; the ability of aboveground architecture to attenuate waves and impede through‐flow; the capability of roots to bind sediments subjected to wave action; and the alteration of coastline resiliency by plant structures and genetic traits. We conclude that ecological and engineering practices must be combined in order to develop a sustainable, realistic, and integrated coastal protection strategy

    Photodissociation regions and star formation in the Carina Nebula

    Get PDF
    We have obtained wide-field thermal infrared (IR) images of the Carina Nebula, using the SPIREX/Abu telescope at the South Pole. Emission from poly-cyclic aromatic hydrocarbons (PAHs) at 3.29um, a tracer of photodissociation regions (PDRs), reveals many interesting well defined clumps and diffuse regions throughout the complex. Near-IR images (1--2um), along with images from the Midcourse Space Experiment (MSX) satellite (8--21um) were incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole Nebula and were mapped in 12CO(2--1) and (1--0) using the SEST. Analysis of their physical properties reveals they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430-5931 in the southern molecular cloud, shows strong 3.29-, 8- and 21-um emission, the spectral energy distribution (SED) revealing the location of an ultra-compact (UC) HII region. The northern part of the nebula is complicated, with PAH emission inter-mixed with mid-IR dust continuum emission. Several point sources are located here and through a two-component black-body fit to their SEDs, we have identified 3 possible UC HII regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is on-going and not halted by the intense radiation from the surrounding young massive stars.Comment: 14 pages, 12 figures. Accepted by MNRAS. Higher resolution figures available at http://www.phys.unsw.edu.au/~jmr/papers.htm

    QuPath Digital Immunohistochemical Analysis of Placental Tissue

    Get PDF
    Background: QuPath is an open-source digital image analyzer notable for its user-friendly design, cross-platform compatibility, and customizable functionality. Since it was first released in 2016, at least 624 publications have reported its use, and it has been applied in a wide spectrum of settings. However, there are currently limited reports of its use in placental tissue. Here, we present the use of QuPath to quantify staining of G-protein coupled receptor 18 (GPR18), the receptor for the pro-resolving lipid mediator Resolvin D2, in placental tissue. Methods: Whole slide images of vascular smooth muscle (VSM) and extravillous trophoblast (EVT) cells stained for GPR18 were annotated for areas of interest. Visual scoring was performed on these images by trained and in-training pathologists, while QuPath scoring was performed with the methodology described herein. Results: Bland-Altman analyses showed that, for the VSM category, the two methods were comparable across all staining levels. For EVT cells, the high-intensity staining level was comparable across methods, but the medium and low staining levels were not comparable. Conclusions: Digital image analysis programs offer great potential to revolutionize pathology practice and research by increasing accuracy and decreasing the time and cost of analysis. Careful study is needed to optimize this methodology further

    Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion

    Get PDF
    Coastlines have traditionally been engineered to maintain structural stability and to protect property from storm‐related damage, but their ability to endure will be challenged over the next century. The use of vegetation to reduce erosion on ocean‐facing mainland and barrier island shorelines – including the sand dunes and beaches on these islands – could be part of a more flexible strategy. Although there is growing enthusiasm for using vegetation for this purpose, empirical data supporting this approach are lacking. Here, we identify the potential roles of vegetation in coastal protection, including the capture of sediment, ecological succession, and the building of islands, dunes, and beaches; the development of wave‐resistant soils by increasing effective grain size and sedimentary cohesion; the ability of aboveground architecture to attenuate waves and impede through‐flow; the capability of roots to bind sediments subjected to wave action; and the alteration of coastline resiliency by plant structures and genetic traits. We conclude that ecological and engineering practices must be combined in order to develop a sustainable, realistic, and integrated coastal protection strategy

    QuPath Digital Immunohistochemical Analysis of Placental Tissue

    Get PDF
    Background: QuPath is an open‑source digital image analyzer notable for its user‑friendly design, cross‑platform compatibility, and customizable functionality. Since it was first released in 2016, at least 624 publications have reported its use, and it has been applied in a wide spectrum of settings. However, there are currently limited reports of its use in placental tissue. Here, we present the use of QuPath to quantify staining of G‑protein coupled receptor 18 (GPR18), the receptor for the pro‑resolving lipid mediator Resolvin D2, in placental tissue. Methods: Whole slide images of vascular smooth muscle (VSM) and extravillous trophoblast (EVT) cells stained for GPR18 were annotated for areas of interest. Visual scoring was performed on these images by trained and in‑training pathologists, while QuPath scoring was performed with the methodology described herein. Results: Bland–Altman analyses showed that, for the VSM category, the two methods were comparable across all staining levels. For EVT cells, the high‑intensity staining level was comparable across methods, but the medium and low staining levels were not comparable. Conclusions: Digital image analysis programs offer great potential to revolutionize pathology practice and research by increasing accuracy and decreasing the time and cost of analysis. Careful study is needed to optimize this methodology further

    The reductive activation of CO2 across a Ti═Ti double bond: synthetic, structural, and mechanistic studies

    Get PDF
    [Image: see text] The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti(2)Pn(†)(2) (1) (Pn(†) = 1,4-{Si(i)Pr(3)}(2)C(8)H(4)) with CO(2) is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO(2) reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO(2) molecule bound symmetrically to the two Ti centers in a ÎŒ:η(2),η(2) binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO(2) is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a ÎŒ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η(8) fashion to each of the formally Ti(III) centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti(2)Pn(2) (Pn = C(8)H(6)) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO(2) reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-Ti(III) species to yield di-Ti(II) and di-Ti(IV) products. 1 forms a structurally characterized, thermally stable CS(2) adduct 8 that shows symmetrical binding to the Ti(2) unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(ÎŒ-S) mono(CO) species 10. Ph(3)PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(ÎŒ-S) complex 11 with a double-sandwich structure and bis(ÎŒ-S) dimer 12 in which the Ti–Ti bond has been cleaved

    Association between smoking, e-cigarette use and severe COVID-19: a cohort study

    Get PDF
    Background: Smoking is a risk factor for most respiratory infections, but it may protect against SARS-CoV-2 infection. The objective was to assess whether smoking and e-cigarette use were associated with severe COVID-19.Methods: This cohort ran from 24 January 2020 until 30 April 2020 at the height of the first wave of the SARS-CoV-2 epidemic in England. It comprised 7 869 534 people representative of the population of England with smoking status, demographic factors and diseases recorded by general practitioners in the medical records, which were linked to hospital and death data. The outcomes were COVID-19-associated hospitalization, intensive care unit (ICU) admission and death. The associations between smoking and the outcomes were assessed with Cox proportional hazards models, with sequential adjustment for confounding variables and indirect causal factors (body mass index and smoking-related disease).Results: Compared with never smokers, people currently smoking were at lower risk of COVID-19 hospitalization, adjusted hazard ratios (HRs) were 0.64 (95% confidence intervals 0.60 to 0.69) for <10 cigarettes/day, 0.49 (0.41 to 0.59) for 10–19 cigarettes/day, and 0.61 (0.49 to 0.74) for ≄20 cigarettes/day. For ICU admission, the corresponding HRs were 0.31 (0.24 to 0.40), 0.15 (0.06 to 0.36), and 0.35 (0.17 to 0.74) and death were: 0.79 (0.70 to 0.89), 0.66 (0.48 to 0.90), and 0.77 (0.54 to 1.09) respectively. Former smokers were at higher risk of severe COVID-19: HRs: 1.07 (1.03 to 1.11) for hospitalization, 1.17 (1.04 to 1.31) for ICU admission, and 1.17 (1.10 to 1.24) for death. All-cause mortality was higher for current smoking than never smoking, HR 1.42 (1.36 to 1.48). Among e-cigarette users, the adjusted HR for e-cigarette use and hospitalization with COVID-19 was 1.06 (0.88 to 1.28), for ICU admission was 1.04 (0.57 to 1.89, and for death was 1.12 (0.81 to 1.55).Conclusions: Current smoking was associated with a reduced risk of severe COVID-19 but the association with e-cigarette use was unclear. All-cause mortality remained higher despite this possible reduction in death from COVID-19 during an epidemic of SARS-CoV-2. Findings support investigating possible protective mechanisms of smoking for SARS-CoV-2 infection, including the ongoing trials of nicotine to treat COVID-19
    • 

    corecore