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Low-elevation coastal areas (less than 10 m above sea
level) cover only 2% of the world’s land area.

However, 10% of the world’s human population lives
along this border between land and sea (McGranahan et
al. 2007). During the next century, coastal regions are pro-
jected to generate 77% of global economic output and
contain two-thirds of the world’s megacities (Small and
Nicholls 2003; Martínez et al. 2007). At the same time,
these regions are expected to become increasingly vulner-

able to sea-level rise and extreme events such as storms
(including hurricanes) and tsunamis, while also experi-
encing changes in flora and fauna associated with global
warming and ocean acidification. Thus, human settle-
ments will be subjected to increasing levels of erosion and
flooding, damage to infrastructure and ecosystem services,
and loss of life (Adger et al. 2005). To cope with these haz-
ards, humans are likely to accelerate efforts to stabilize
coastal areas.

Past attempts at such stabilizing measures have relied
upon the construction of traditional structures such as
jetties and levees. Yet these kinds of protective measures
alter sediment transport and accretion processes, often
resulting in loss of ecosystems and ecosystem services and,
consequently, negatively affecting nearby human com-
munities (Jackson et al. 2013). Members of the public are
becoming progressively more aware that static structures
and policies do not function adequately when challenged
by dynamic coastal systems that are changing even more
rapidly in the 21st century due to an altered climate, and
are beginning to question whether traditional structural
measures are the only valid approach. 

Concepts such as nature-based solutions (Hanley et al.
2014; Ibáñez et al. 2014), shelter belts or bioshields
(Fosberg and Chapman 1971; Feagin et al. 2010a), and
ecological restoration and ecological engineering (Borsje
et al. 2011; Firth et al. 2014; van Wesenbeeck et al. 2014)
are gaining more attention within the coastal manage-
ment and engineering communities. In particular, there
has been growing enthusiasm for the use of vegetation as
protection against extreme weather events (eg Danielsen
et al. 2005; Barbier et al. 2008; Tanaka et al. 2008; Martínez
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Coastlines have traditionally been engineered to maintain structural stability and to protect property from
storm-related damage, but their ability to endure will be challenged over the next century. The use of vegetation
to reduce erosion on ocean-facing mainland and barrier island shorelines – including the sand dunes and
beaches on these islands – could be part of a more flexible strategy. Although there is growing enthusiasm for
using vegetation for this purpose, empirical data supporting this approach are lacking. Here, we identify the
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resiliency by plant structures and genetic traits. We conclude that ecological and engineering practices must be
combined in order to develop a sustainable, realistic, and integrated coastal protection strategy.          
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In a nutshell:
• Vegetation can help to build protective dunes in coastal

areas, given enough time and sediment supply
• Aboveground plant architecture can cause waves to break

sooner than they otherwise would, but it is currently
unknown whether or how their roots can hold dune sand
together under the forces of breaking waves

• Native plants are typically adapted to being uprooted or re-
seeded when storms strike, rather than remaining in place 

• Novel management strategies can take advantage of the
effects of vegetation and erosion on coastal ecosystems

• Ecologists and engineers must collaborate on erosion preven-
tion and infrastructure protection projects that promote a
dynamic view of the coast
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et al. 2011). Nevertheless, field-based and empirical data
that quantify the effectiveness of such approaches are gen-
erally lacking. Coastal managers are therefore forced to
move forward with imperfect or unsupported science, and
this is predominantly the case for those dealing with high-
energy, ocean-facing shorelines.

In this review, our objective is to synthesize the litera-
ture on the effectiveness of vegetation in the protection
of ocean-facing shorelines, such as along mainland
beaches and barrier islands. We focus on the conceptual
and historical bases of using vegetation for protection,
and we also explore the physical and ecological mecha-
nisms by which this protection may be provided.

n Short-term versus long-term processes

Vegetation must respond to coastal processes on both
short-term (seconds to days) and long-term (years to mil-
lennia) scales (Figure 1). Short-term disturbances in
coastal environments are often dramatic and rapid, and are
typified by nearshore scouring, shoreface erosion, flooding
and flattening of dunes, barrier breaching and overwash,
and deposition of sand at landward locations. Vegetation
has been studied in terms of species tolerance to these dis-
turbances as potential stressors (Maun 1994). Research on
the ability of vegetation to influence geomorphic (relating
to the form or surface features of the Earth) changes during
a storm either has generally overlooked the specific and
linked vegetative–geomorphic mechanisms that function
during these events or has – in the case of laboratory exper-

iments addressing the underlying mechanisms –
been limited to the use of inanimate objects such as
wooden dowels or cylindrical rods made of flexible
foam to mimic plant effects. However, neither of
these tactics can mimic the potentially substantial
above- and belowground effects of real vegetation
(eg Kobayashi et al. 2013).

In contrast, long-term processes, such as world-
wide sea-level rise and local subsidence, continu-
ously alter topographic elevation, nearshore
bathymetry, and littoral and aeolian sediment trans-
port dynamics. Specifically, the exposure of coastal
dune vegetation to a shifting substrate has exerted a
selective pressure on these plants, resulting in adap-
tations to burial. Among less tolerant plant species,
the response has been a spatial migration by subse-
quent generations. The functional role of dune veg-
etation as a management tool for altering the topo-
graphy of a landscape has been well-documented by
ecologists, beginning with Cowles (1899), and it is
now well known that the formation of coastal dunes
is closely associated with vegetation.

Short- and long-term events act synergistically:
short-term processes cause long-term processes to
move along a specific trajectory, and long-term
processes set the baseline conditions that short-
term processes act upon. Moreover, the time and

spatial scale of a physical process must match the scale
that vegetation can respond to, in order for the vegeta-
tion to substantially alter or mitigate the process (Feagin
et al. 2010b). Furthermore, coastal managers make deci-
sions at the project scale – the spatial and temporal scales
at which funding is acquired, expended, and used to phys-
ically alter the shoreline – and these decisions often
involve different alternatives (leaving the shore alone,
using nature-based solutions, or involving traditional
engineering practices in construction) to achieve out-
comes such as reducing the risk of inland flooding or min-
imizing changes to ecosystem functions. 

In view of the interactions among physical and ecological
processes, we first examine plants as modifiers of the envi-
ronment before the arrival of a major storm, in order to
understand the role of vegetation in forming the cross-shore
profile of a high-energy shoreline. We then explore the role
of vegetation as direct protection during an episodic storm
event, when waves and flowing water are intersecting this
profile. We close by identifying plant functional traits that
enable survival during storms and evaluate post-storm recov-
ery, when longer-term processes once again dominate. 

n Plants as modifiers of geomorphic features before
a storm 

Sand dunes can form in the absence of plants, particularly
in interior and coastal deserts (Hesp 1989). However, on a
sandy coast, vegetation typically increases dune height and
volume when sediment supply is sufficient (Figure 2).

Figure 1. Coastal processes operate at a variety of temporal and spatial
scales, although people most often intervene at the project scale (where the
disciplines of ecology and engineering overlap).
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Plants and other material (eg wrack) act as bar-
riers to wind flow (Durán and Moore 2013),
reducing the local wind velocity behind and
below the canopy surface, thereby allowing
sand to accumulate. Embryonic dunes begin to
grow, merge, and develop into dune ridges over
longer periods of time. Emergent properties
evolve beyond those of individual plants, and
in this sense, plant communities and geomor-
phic sequences operate as complex systems
(Stallins and Parker 2003).

Organisms and their interactions can shape,
and are shaped by, geomorphic processes
(Murray et al. 2008). Both the general form and
the physiology of vegetation are linked with
the movement of sediments. Grasses, for exam-
ple, typically accumulate sediment more effi-
ciently than do forbs or woody species because
of their flexible stems, which allow them to lie
flat on the ground during high winds, and the nodes on
their stems from which they can grow roots after burial in
sand (Gilbert and Ripley 2010). Dune-builders generally
have similar responses to sand accretion, but there is geo-
graphic variation in individual species among coastal dune
systems. For instance, sediment accretion actually stimu-
lates growth in Ammophila breviligulata and Uniola panicu-
lata in North America, and Ammophila arenaria in Europe,
thus facilitating further sediment deposition in a dune-
building feedback loop. This process is less effective in
other grass species (eg Spartina patens) or may occur in later
successional stages, where burial is not as common (eg
Andropogon spp). Forbs and woody species are more erect
than grasses and are not usually associated with dune-
building in temperate climates. These types of plants are
more vulnerable to damage by wind, particularly to the
severe dehydration and necrosis of leaf tissue that may
result from abrasion of the cuticle by wind-borne sand. Yet
in tropical climates – such as on the dunes along the south-
ern Gulf of Mexico – typical dune-building species take the
form of short shrubs, in which growth is stimulated by sand
burial (Martínez and Moreno-Casasola 1996).

As the topography of a high-energy shoreline becomes
higher in elevation and more complex, new plant types
arrive, each with distinctive functional traits enabling them
to avoid moisture stress (eg leaf rolling, soft down or fine
short hairs on the leaves and stems, succulence), withstand
low nutrient availability, and develop root symbioses with
vesicular–arbuscular mychorrhizal fungi (AMF; Maun
1994). AMF are crucial to the functioning of coastal dune
ecosystems, improving plant drought tolerance, enhancing
nutrient acquisition, and reducing salt stress. Once the land-
scape has been modified by dune plant species and AMF, the
development of shrub thickets, maritime forests, or other cli-
max communities can occur (Wolner et al. 2013).

In sum, vegetation alters the geomorphic features of high-
energy shorelines, which subsequently alter the distribution
patterns of wind-borne salt spray and floodwaters affecting

landward locations. Vegetation creates topographic protec-
tion, given adequate time and sediment supply.

n Plants as modifiers of soil stability before a storm

Coastal sand dunes form a protective barrier that erodes
under storm conditions. The processes of beach erosion
during intense episodes such as hurricanes have been
widely studied and can be characterized reasonably well,
because the sediment being transported is predominantly
non-cohesive material (Silva et al. 2012). Although more
cohesive clay soils do form beaches and dunes, their ero-
sive properties are less well-characterized. 

Gravity and intergranular friction are the only forces
maintaining the profile of unvegetated dunes made of
purely granular material. During a storm, wave energy is
dissipated primarily through turbulence initiated by wave
breaking, and the high fluid stress acts to carry along
granular material, which is redistributed throughout the
nearshore zone. Assuming equal densities, coarse grains
are more difficult to mobilize than fine grains because of
their greater mass.

Plants can alter the physical properties of a dune in two
distinct ways: with their root network and by altering the
composition of the sediment itself (Figure 3; the role of
individual roots will be discussed in the next section). A
plant community can add organic matter (including
humic material) directly to the soil and also increase its
clay content by trapping relatively fine inorganic sedi-
mentary particles. These two processes can reduce ero-
sion over the long term by increasing particle cohesion
(Wischmeier and Smith 1978; Feagin et al. 2009). Plants
also reduce soil desiccation by generating shaded micro-
climates, and soil moisture generally increases particle
cohesion (Pollen et al. 2004) with variable effects on ero-
sion (Bendoni et al. 2014).

Moreover, AMF play an active role in soil aggregation
and erosion control. Increased soil stability has been attrib-

Figure 2. Individual ramets begin to trap sediment and add elevation
(foreground), which will lead to dune formation in the presence of continued
sediment supply (background). Vegetation will continuously grow and increase
dune height. Matagorda Peninsula, Texas.



Vegetation and coastal protection RA Feagin et al.

206

www.frontiersinecology.org © The Ecological Society of America

uted to the secretion of water-stable adhesive compounds
and the physical entanglement of soil particles by AMF
hyphae, which bind fine grains into larger assemblages
(Figure 4; Daynes et al. 2013; Sigren et al. 2014). The for-
mation of larger soil aggregates effectively increases erosion
resistance because coarser, heavier particles are more diffi-
cult to mobilize. The presence of AMF on plants has been
shown to reduce erosion from wind and rain in sandy soils
(Burri et al. 2011), but their impact on wave-induced ero-
sion on high-energy shorelines has not been studied.

Plant-induced sedimentary changes can
increase grain-to-grain cohesion and trans-
form a dune from a collection of individual
grains to a larger mass of grains, bound
together, increasing the effective grain
diameter and thus reducing erosion.
Moreover, resistance to soil shearing should
increase and, in a storm impact regime, the
binding forces should reduce slumping after
scarp formation. 

n Plants as structures that alter
hydrodynamics during a storm

Both above- and belowground plant struc-
tures likely alter wave energy and flow during
storms. When a storm hits, the impact
regime (the type of erosion at a specific loca-
tion along the beach-dune gradient) deter-
mines the portions of plant structures that
are reached by the waves (Figure 5). Possible
scenarios include wave collision, overwash,
and inundation (Sallenger 2000), which are
based on relative water levels (surge and
wave runup) with respect to the beach, dune,
or barrier height. In the collision regime,
waves break and exert their energy on the
dune face. Large amounts of sediment can be
mobilized and redistributed along the beach
profile and a prominent dune scarp may con-
tinuously progress landward. The overwash
regime entails intermittent wave overtop-
ping of the dune crest, which may lead to
rapid crest erosion that alters both the sea-
ward and landward sides of the dune (Figlus
et al. 2011). During the inundation regime,
dunes are eroded via a constant flow of water
over the crest, with erosion mostly occurring
on the landward face.

The limited amount of empirical research
on this topic for high-energy shorelines
clearly indicates that erosion is reduced
when using dowels (Kobayashi et al. 2010,
2013) or when vegetation is placed in wave
flumes under collision regimes (Odériz
Martínez et al. 2014). Nonetheless, the spe-
cific mechanisms (above- versus below-

ground structures, uprooting versus scour versus attenua-
tion, etc) that alter the hydrodynamics or sediment
transport have not been defined; we must therefore
extrapolate from other landforms where work has been
conducted (riverine slopes, herbaceous salt marshes) in
order to create a hypothesized understanding of their pro-
tective role. Still, in contrast to these other landforms,
beaches, dunes, and barrier island ridges are unique in that
they have coarse and granular sands, as well as steep sub-
strate slopes maintained by gravity (when not vegetated),

Figure 3. Plants alter the physical structure of the sediment with their roots in an
immediate sense and also by “re-engineering” sediment properties over time.
Possible states, or experimental units for research, include: (a) original sediment
only, (b) original sediment and plant roots, (c) plant-modified sediment and
plant roots, and (d) plant-modified sediment only. (e) Cross section of a dune
near Matunuck, Rhode Island, exhibiting aboveground portions, belowground
roots, and two different soil structures.

(a) (b)

(c) (d)

(e)
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and in that they are affected only when wave energy
and water levels are extreme, during storms.

Aboveground plant structures alter hydrodynamic
forces, although this finding has been limited to sea-
grasses and wetland plants that are fully or partially
submerged, and to flat surfaces with fine, cohesive
sediment (eg Blackmar et al. 2014). Aboveground
portions of plants add surface roughness to the land-
scape, increasing the friction encountered by water
particles (Nepf and Koch 1999). Stems and leaves
alter turbulence and flow patterns, and therefore
patterns of scouring, erosion, and sediment accre-
tion (Bouma et al. 2008). Enhanced friction reduces
the wave energy that would otherwise propagate
landward, although it can also cause waves to break
farther seaward. Such plant-induced wave transfor-
mation is dependent on such factors as wave height,
period, and speed; water level (Möller and Spencer
2002); and vegetative architecture (Tanaka et al.
2008), density, and width (Koch et al. 2009). In wet-
lands, wave attenuation and enhancement
processes occur at the scale of an individual plant,
with cumulative effects potentially influencing
broad areas of coast during large storm surges (Sheng et al.
2012; Zhang et al. 2012; Lapetina and Sheng 2014). This
capacity to attenuate wave energy may be reduced when
the cross-shore width or height of an ecosystem is altered
due to human settlement, particularly in the case of dunes.
However, it is not clear whether this effect is largely
attributable to the change in plant architecture or
geomorphic structure (Feagin et al. 2010b).

Flexible aboveground structures that bend easily
with the water flow do not dissipate as much energy
as rigid structures, given the same surface area
(Feagin et al. 2011), yet the flexible portions also
transfer less energy down the stem shaft and into the
roots. Depending on the vegetation density and
rigidity or stiffness of the connection between above-
and belowground components, the energy trans-
ferred may lead to plant uprooting and an increase in
erosion. Conversely, exposed root systems may also
provide additional hydrodynamic resistance and
energy dissipation if portions of the root system are
still anchored (eg clonal species in particular),
although this represents change for the root system
from belowground to aboveground. Kobayashi et al.
(2013) identified both cases in the same system,
demonstrating that above- and belowground compo-
nents need to be considered together.

Terrestrial belowground root structures may
increase soil cohesion through their tensile
strength and their ability to create suction through
a water pressure gradient (Wu 2013), but this evi-
dence has been restricted to studies on cohesive
sediment. While much of the research on roots and
erosion has been conducted in the context of shal-
low landslides and slope stability analyses (Schmidt

et al. 2001), and because the marine literature has focused
primarily on boundary layer hydraulics (Houwing 1999),
riverbanks and salt marshes may provide the best analogs
for high-energy (ocean-facing) coasts.

For riverbanks, the ability of roots to provide reinforce-

Figure 4. Binding of sand grains by vesicular–arbuscular mychorrhizal
fungi, surrounding the roots of Sporobolus virginicus (magnified at
×45). After Sigren et al. (2014). 

Figure 5. Above- and belowground plant–substrate–wave interaction
scenarios during storms: (a) swash interaction, (b) dune scarping/
slumping during collision regime, and (c) overwash and inundation
regimes. While the flow direction in (a) and (b) reverses between uprush
and downrush, the flow during (c) is unidirectional.

(a)

(b)

(c)
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ment is dependent on the soil shear strength and bulk
density (Pollen et al. 2004), both of which would be much
different in a soil composed of sand grains. For salt
marshes in areas with highly cohesive sediments, the
roots of salt-marsh plants have little to no effect on ero-
sion under wave action (Feagin et al. 2009) and while
over sufficient time these roots reduce the frequency of
smaller erosion events, they also increase the magnitude
of larger erosion events (Francalanci et al. 2013). The
larger, albeit less frequent, episodes of mass failure of a
riverbank are a result of the roots binding sediment until
aggregated root clumps break off.

For high-energy shorelines, the applicability of tradi-
tional vegetation–geotechnical models will likely be lim-
ited, particularly given the granularity of the sandy sedi-
ment. An additional aspect to consider is that many
beach and dune plants rely on the uprooting of their rhi-
zomes for dispersal, although the importance of this phys-
iological trait for erosion has not been examined.
Exploration of these topics must begin with empirical
studies. 

n Plants as modifiers of recovery after a storm 

The unique set of functional traits of each plant species
affects the mode of recovery from extreme events
(MacGillivray et al. 1995), and therefore influences the
long-term resiliency of the dune-building process.
Dispersal by early successional plant species – often annu-
als in temperate latitudes, but usually perennials in the
tropics – allows re-colonization of bare areas through the
spread of seeds and rhizomes that can withstand saline
conditions (Gornish and Miller 2010).
Such species are tolerant to disturbances
and often spread to new areas after a
storm. Annual plants, such as the endan-
gered Amaranthus pumilus, require a lack
of substrate stability to maintain their
niche, and travel long distances to these
locations through dispersal of their small
seeds. Many perennial beach and dune
plants, such as U paniculata, Panicum
amarum, or Leymus mollis, respond to
extreme events by uprooting and spread-
ing via rhizomes and nodes; the seeds of
both the Western Gulf variety of U panic-
ulata and P amarum are not viable, and
yet these species persist and dominate
dune tops as a result of this trait (Feagin
2013). In the tropics, Cakile lanceolata
seeds are adapted to being carried on
ocean currents, and the pan-tropical
creepers Canavalia rosea and Ipomoea pes-
caprae are also widely dispersed by ocean
currents (Devall 1992; Mendoza-
González et al. 2014). In general, the
growth of coastal dune psammophytes
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(plants that thrive in sandy habitats) at all latitudes is
stimulated by disturbance events, such as burial in sand
(Maun 1994). That is, disturbance as a result of an
extreme event is not a threat to most native dune species,
but rather a chance to extend their distribution. 

Notably, since the nineteenth century, stiff and tall
plant structures, typically woody species not adapted to
the dynamism of coastal ecosystems, have been selected
and introduced specifically for the purpose of stabilizing
sandy substrates, attenuating waves, and reducing water-
flow speeds (Feagin et al. 2010a). Both Tamarix gallica and
Casuarina equisetifolia were introduced by coastal man-
agers in many areas to provide a hard protective structure
that was assumed to be better than the herbaceous species
they replaced on beaches and sand dunes. Yet in the case
of C equisetifolia in India, sedimentary accretion and eleva-
tion were reduced, and critical habitat for many animals
(eg nesting sea turtles) was lost (Mukherjee et al. 2010).

Similarly, the introduced, herbaceous A arenaria (or A
breviligulata, depending on location) re-engineered for-
merly low, hummocky dunes dominated by U paniculata
into taller, ridge-like dunes that subsequently reduced
overwash and landscape diversity, through the use of a
guerilla (spreading across larger distances) versus phalanx
(clumping within a given spot) root-binding strategy
(Stallins and Parker 2003). Over decades, a monoculture
of the invader species can emerge, altering the topography,
reducing habitat diversity, and leaving the ecosystem less
resilient to disturbance (Seabloom and Wiedemann 1994;
Hertling and Lubke 2000).

In spite of the above results, research has not fully
addressed how woody versus herbaceous species differen-

Table 1. Management considerations for the use of vegetation species
as protection on high-energy shorelines

Choose plants as modifiers of geomorphic features based on their ability to: 
• Accrete sand/build elevation
• Develop high dunes versus low hummocks
• Fit within a heterogeneous array of different successional stages, with effects on

landscape form

Choose plants as modifiers of soil stability based on their ability to:
• Add soil organic matter and increase water content, reduce soil bulk density
• Promote mycorrhizae, increase effective grain size of non-cohesive particles
• Promote clay and cohesive particle accumulation
• Incorporate layering of algal and other beach wrack

Choose plants as structures that alter storm hydrodynamics based on their ability to:
• Attenuate waves and alter water velocities according to: stem height, diameter,

flexibility; leaf area; overall plant architecture; aboveground biomass
• Reinforce, abrade, or loosen soils according to: root diameter, configuration, and

density; belowground biomass; aboveground-to-belowground biomass ratio

Choose plants as modifiers of storm recovery based on their ability to:
• Physiologically respond to storm erosion according to: damages to plant struc-

tures or compensatory stimulation of growth; sexual (seeding) versus asexual
(uprooting of rhizomes) modes of reproductive spread

• Provide protection for humans via their physiognomic form; potential to also
become invasive, alter habitat diversity, and increase or decrease long-term
ecosystem resilience
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tially accumulate sand, and
whether generalizations can be
made regarding their protective
role with regard to erosion.
Moreover, the scientific commu-
nity has yet to identify whether
the roots of any species of coastal
plant respond physiologically to
sediment removal (as opposed to
sediment addition). 

n Conclusion 

Novel management strategies can take advantage of the
interactions between vegetation and physical erosion
processes, but they will need to be tailored to realistic
scales of action. Ecologists must listen carefully to local
citizens, real estate agents, homeowners associations, and
politicians, as they are the stakeholders and decision
makers for the majority of coastal lands. The decisions
made by these stakeholders are most often made based on
political and economic considerations, and are exercised
at the scale of individual parcels of land. Managers typi-
cally have project action plans that extend only one to a
few years into the future, with the implementation of
these actions occurring on parcels that range in size from
several meters to several thousand meters. The good news
is that when ecologists can guide specific management
actions (Table 1), vegetation can be used to control sedi-
ments at these spatial and temporal scales. 

The resilience of managed coastal systems and their
resistance to disturbance will be stretched to new limits
over the next century. In the past, coastlines have tradi-
tionally been managed for resistance (structural stability)
rather than for resilience (functional dynamism), with
fear of extreme events being weighted over the impor-
tance of maintaining long-term sustainability (Table 2).
Accordingly, when implementing coastal projects, some
low-cost, nature-based solutions such as planting vegeta-
tion have been ignored, in favor of more expensive, hard-
structure solutions. To maximize sustainability, coastal
ecologists and engineers must find a better balance
between human needs and natural system requirements,
and work together to develop a comprehensive strategy
for integrated coastal protection.
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