6 research outputs found

    The Sneeuberg: A new centre of floristic endemism on the Great Escarpment, South Africa

    Get PDF
    The Sneeuberg mountain complex (Eastern Cape) comprises one of the most prominent sections of the Great Escarpment in southern Africa but until now has remained one of the botanically least known regions. The Sneeuberg is a discrete orographical entity, being delimited in the east by the Great Fish River valley, in the west by the Nelspoort Interval, to the south by the Plains of Camdeboo, and to the north by the Great Karoo pediplain. The highest peaks range from 2278 to 2504 m above sea level, and the summit plateaux range from 1800 to 2100 m. Following extensive literature review and a detailed collecting programme, the Sneeuberg is reported here as having a total flora of 1195 species of which 107 (9%) are alien species, 33 (2.8%) are endemic, and 13 (1.1%) near-endemic. Five species previously reported as Drakensberg Alpine Centre (DAC) endemics are now known to occur in the Sneeuberg (representing range extensions of some 300–500 km). One-hundred-and-five species (8.8%) are DAC near-endemics, with the Sneeuberg being the western limit for most of these. Ten species (0.8%) represent disjunctions across the Karoo Interval from the Cape Floristic Region (CFR) to the Sneeuberg. In all, some 23 significant range extensions, eight new species, and several rediscoveries are recorded. We conclude by recognising the Sneeuberg as a new centre of endemism along the Great Escarpment, with floristic affinities with the Albany Centre and the DAC, and links to the CFR

    Post occupancy evaluations relating to discomfort glare : a study of green buildings in Brisbane

    No full text
    Glare indices have yet to be extensively tested in daylit open plan offices, as such there is no effective method to predict discomfort glare within these spaces. This study into discomfort glare in open plan green buildings targeted full-time employees, working under their everyday lighting conditions. Three green buildings in Brisbane were used for data collection, two were Green Star accredited and the other contained innovative daylighting strategies. Data were collected on full-time employees, mostly aged between 30 and 50 years, who broadly reflect the demographics of the wider working population in Australia. It was discovered 36 of the 64 respondents experienced discomfort from both electric and daylight sources at their workspace.\ud \ud The study used a specially tailored post-occupancy evaluation (POE) survey to help assess discomfort glare. Luminance maps extracted from High Dynamic Range (HDR) images were used to capture the luminous environment of the occupants. These were analysed using participant data and the program Evalglare.\ud \ud The physical results indicated no correlation with other developed glare metrics for daylight within these open plan green buildings, including the recently developed Daylight Glare Probability (DGP) Index. The strong influence of vertical illuminance, Ev in the DGP precludes the mostly contrast-based glare from windows observed in this investigation from forming a significant part of this index. Furthermore, critical assessment of the survey techniques used are considered. These will provide insight for further research into discomfort glare in the endeavour to fully develop a suitable glare metric

    Protocols in the use of empirical software engineering artifacts

    No full text
    If empirical software engineering is to grow as a valid scientific endeavor, the ability to acquire, use, share, and compare data collected from a variety of sources must be encouraged. This is necessary to validate the formal models being developed within computer science. However, within the empirical software engineering community this has not been easily accomplished. This paper analyses experiences from a number of projects, and defines the issues, which include the following: (1) How should data, testbeds, and artifacts be shared? (2) What limits should be placed on who can use them and how? How does one limit potential misuse? (3) What is the appropriate way to credit the organization and individual that spent the effort collecting the data, developing the testbed, and building the artifact? (4) Once shared, who owns the evolved asset? As a solution to these issues, the paper proposes a framework for an empirical software engineering artifact agreement. Such an agreement is intended to address the needs for both creator and user of such artifacts and should foster a market in making available and using such artifacts. If this framework for sharing software engineering artifacts is commonly accepted, it should encourage artifact owners to make the artifacts accessible to others (gaining credit is more likely and misuse is less likely). It may be easier for other researchers to request artifacts since there will be a well-defined protocol for how to deal with relevant matters

    A phytogeographic assessment of the Nuweveldberge, South Africa

    Get PDF
    AbstractThe Nuweveldberge forms the central and most arid component to the southern Great Escarpment in South Africa. Situated between the Sneeuberg in the east and the Hantam–Roggeveld in the west, the Nuweveldberge has elements of both the Succulent Karoo and Grassland Biomes. The Nuweveldberge has low endemism (0.5%) compared to the adjacent Sneeuberg (2.3%) and Roggeveldberge (ca. 8%). Following an extensive floristic survey of the Nuweveldberge, a contribution of 473 taxa is provided. Together with the flora by Rubin et al., 2001 for the Karoo National Park this provides a total flora of 1139 taxa for the Nuweveldberge. Numerous range extensions of (previous) Sneeuberg endemics and Drakensberg near-endemics onto the Nuweveldberge are recorded. Although the Nuweveldberge may have been a corridor facilitating the movement of species from the Cape Floristic Region via the Komsberg through the Nuweveldberge onto the Sneeuberg (and of Drakensberg elements westwards from the Sneeuberg) there is currently little evidence of such connectivity. This is postulated to be due to aridification of the Nuweveldberge since the Last Glacial Maximum, and also likely explains the low endemism on the Nuweveldberge
    corecore