1,735 research outputs found

    Ablation of carbonaceous materials in a hydrogen-helium arc-jet flow

    Get PDF
    The stagnation-point ablation rates of a graphite, a carbon-carbon composite, and four carbon-phenolic materials are measured in an arc-jet wind tunnel with a 50% hydrogen-50% helium mixture as the test gas. Flow environments are determined through measurements of static and impact pressures, heat-transfer rates to a calorimeter, and radiation spectra, and through numerical calculation of the flow through the wind tunnel, spectra, and heat-transfer rates. The environments so determined are: impact pressure approx. 3 atm, Mach number approx. 2.1, convective heat-transfer rate approx. 14 kw/sq cm, and radiative heat-transfer rate approx. 7 kw/sq cm in the absence of ablation. Ablation rates are determined from the measured rates of mass loss and recession of the ablation specimens. Compared with the predicted ablation rates obtained by running RASLE and CMA codes, the measured rates are higher by about 15% for all tested materials

    Methods of isolation and identification of pathogenic and potential pathogenic bacteria from skins and tannery effluents

    Get PDF
    Currently there is no standard protocol available within the leather industry to isolate and identify pathogenic bacteria from hides, skins or tannery effluent. This study was therefore carried out to identify simple but effective methods for isolation and identification of bacterial pathogens from the effluent and skins during leather processing. Identification methods based on both phenotypic and genotypic characteristics were investigated. Bacillus cereus and Pseudomonas aeruginosa were used as indicator bacteria to evaluate the isolation and identification methods. Decontaminated calfskins were inoculated with a pure culture of the above mentioned bacterial species followed by a pre-tanning and chromium tanning processes. Effluent samples were collected and skins were swabbed at the end of each processing stage. Bacterial identification was carried out based on the phenotypic characteristics; such as colony appearance on selective solid media, cell morphology following a standard Gram-staining and spore staining techniques, and biochemical reactions, e.g., the ability of a bacterial species to ferment particular sugars and ability to produce certain enzymes. Additionally, an identification system based on bacterial phenotypic characteristics, known as Biolog® system was applied. A pulsed-filed gel electrophoresis (PFGE) method for bacterial DNA fingerprinting was also evaluated and used for the identification of the inoculated bacteria. The methods described in the study were found to be effective for the identification of pathogenic bacteria from skins and effluent

    Current Issues in Legal Education

    Get PDF
    Six current issues in legal education, of wide general interest and importance, were posed by the Editors of this review to leading legal educators.These questions were and are frankly difficult and controversial, but their answers are important to our system of legal education and to our society. Capsule answers given by these distinguished legal educators are believed to be interesting and significant. Each is a personal rather than representative opinion. Brief answers such as these, of course, are not expected to be, nor do they pretend to be, complete or profound. Their purpose is to indicate succinctly the approach of outstanding American opinion makers to difficult problems of legal education

    Zero-energy Andreev surface bound states in the lattice model

    Full text link
    The conditions for zero-energy Andreev surface bound states to exist are found for the lattice model of d-wave superconductor with arbitrary surface orientation. Both nearest neighbors and next nearest neighbors models are considered. It is shown that the results are very sensitive to the surface orientation. In particular, for half-filled (hl0)(hl0)-surface zero-energy Andreev surface states only appear under the condition that hh and ll are odd simultaneouslyComment: 9 pages, 1 figur

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping

    Technical Freediving: An Emerging Breath-Hold Diving Technique

    Get PDF
    Technical freediving can be defined as freediving augmented by the use of oxygen-enriched gases or oxygen before, during, or after a freedive. As a result of these techniques, breath-hold divers can visit and enjoy underwater wrecks, reefs, and other diving locations previously located at depths unreachable to apnea divers. By pre-breathing oxygen-enriched gases in conjunction with hyperventilation—which decreases the partial pressure of carbon dioxide (PCO2)—the technical freediver now has additional oxygen to facilitate aerobic respiration during the dive. In addition, pre-breathing oxygen decreases tissue nitrogen tensions, which limits inert gas loading and decreases the risk of decompression sickness (DCS). Finally, this technique decreases PCO2, which diminishes the urge to breathe. Consequently, a diver may be able to dive longer before critical hypoxia or hypercarbia forces an ascent. Technical freediving can also be complemented by the use of a diver propulsion vehicle to increase the speed of descent and ascent and minimize exertion. The techniques of technical freediving may be associated with increased risks in central nervous system oxygen toxicity, DCS, and arterial gas embolism. As the boundaries of apnea diving continue to expand, there will be considerable opportunities to investigate the physiological limits of the human body and to determine the safest methodologies to practice this evolving discipline
    • …
    corecore