661 research outputs found

    Donkeys as mobile links for plant seed dispersal in coastal dune ecosystems

    Get PDF
    Long-distance seed dispersal is a key factor in vegetation dynamics, especially in highly dynamic ecosystems such as dune landscapes. To assess the role of large herbivores in long-distance seed dispersal in dunes, we examined epi- and endozoochory by free-ranging donkeys, released for grazing in a Flemish dune nature reserve. At least 29, respectively 53, plant species were dispersed epi- and endozoochorously by the donkeys. Comparison of the species with the local vegetation using dispersal-relevant plant traits, showed that epi- and endozoochory are additive and complementary dispersal mechanisms, epizoochory being restricted to a narrower range of dispersal-functional plant types. To estimate potential dispersal distances of the seeds, we used empirical studies of the movement and behaviour of the donkeys, in combination with experimental epi- and endozoochorous seed retention times of selected plant species in the dune reserve. The mean potential dispersal distances indicated that the donkeys disperse seeds over the entire 100ha nature reserve, hereby providing a mobile link function between fragmented dune habitats for at least 20% of the local plant species. The influence of large herbivores on dune vegetation dynamics through seed dispersal should be considered in nature management decisions

    Plant-parasitic nematodes associated with sugarcane in Kilimanjaro, Tanzania

    Get PDF
    Morphological and molecular analyses of plant-parasitic nematodes (PPN) from 12 sugarcane plantation sites of Tanganyika Planting Company (TPC) Limited in Kilimanjaro region of Tanzania revealed the presence of six PPN genera, i.e. Helicotylenchus, Hemi-cycliophora, Pratylenchus, Rotylenchulus, Scutellonema, and Tylenchorhynchus. The genera with the highest densities and present in virtually all samples were Pratylenchus and Rotylenchulus, and the most important species appeared to be R. parvus, P. zeae, T. crassicaudatus, and T. ventrosignatus. A total sequences of 11 partial ITS, 15 D2-D3 of 28S, and 6 partial 18S of rRNA gene, and 7 partial COl gene of mtDNA of these species were obtained in this study. Morphology and molecular data comparisons between the Tanzanian R. parvus and the South African R. parvus indicated that R. parvus is a cryptic species complex. Based on the results of morphological and molecular analyses of T. crassicaudatus and T. agri from China, Haiti, Indonesia, Iran, Niger and the USA, T. agri syn. n. is proposed as a junior synonym of T. crassicaudatus

    Evaluation Codes from smooth Quadric Surfaces and Twisted Segre Varieties

    Full text link
    We give the parameters of any evaluation code on a smooth quadric surface. For hyperbolic quadrics the approach uses elementary results on product codes and the parameters of codes on elliptic quadrics are obtained by detecting a BCH structure of these codes and using the BCH bound. The elliptic quadric is a twist of the surface P^1 x P^1 and we detect a similar BCH structure on twists of the Segre embedding of a product of any d copies of the projective line.Comment: 10 pages. Presented at the conference Workshop on Coding theory and Cryptography 201

    Time-budget and location of activities in the paddock can be estimated from GPS-data

    Get PDF
    Time-budget and location of activities in the paddock can be estimated from GPS-data. 10. International Symposium on the Nutrition of Herbivores (ISNH

    Insights into the Influence of Priors in Posterior Mapping of Discrete Morphological Characters: A Case Study in Annonaceae

    Get PDF
    Background - Posterior mapping is an increasingly popular hierarchical Bayesian based method used to infer character histories and reconstruct ancestral states at nodes of molecular phylogenies, notably of morphological characters. As for all Bayesian analyses specification of prior values is an integrative and important part of the analysis. He we provide an example of how alternative prior choices can seriously influence results and mislead interpretations. Methods/Principal Findings - For two contrasting discrete morphological characters, namely a slow and a fast evolving character found in the plant family Annonaceae, we specified a total of eight different prior distributions per character. We investigated how these prior settings affected important summary statistics. Our analyses showed that the different prior distributions had marked effects on the results in terms of average number of character state changes. These differences arise because priors play a crucial role in determining which areas of parameter space the values of the simulation will be drawn from, independent of the data at hand. However, priors seemed to fit the data better if they would result in a more even sampling of parameter space (normal posterior distribution), in which case alternative standard deviation values had little effect on the results. The most probable character history for each character was affected differently by the prior. For the slower evolving character, the same character history always had the highest posterior probability independent of the priors used. In contrast, the faster evolving character showed different most probable character histories depending on the prior. These differences could be related to the level of homoplasy exhibited by each character. Conclusions - Although our analyses were restricted to two morphological characters within a single family, our results underline the importance of carefully choosing prior values for posterior mapping. Prior specification will be of crucial importance when interpreting the results in a meaningful way. It is hard to suggest a statistically sound method for prior specification without more detailed studies. Meanwhile, we propose that the data could be used to estimate the prior value of the gamma distribution placed on the transformation rate in posterior mappin

    To adapt or go extinct? The fate of megafaunal palm fruits under past global change

    Get PDF
    Past global change may have forced animal-dispersed plants with megafaunal fruits to adapt or go extinct, but these processes have remained unexplored at broad spatio-temporal scales. Here, we combine phylogenetic, distributional and fruit size data for more than 2500 palm (Arecaceae) species in a time-slice diversification analysis to quantify how extinction and adaptation have changed over deep time. Our results indicate that extinction rates of palms with megafaunal fruits have increased in the New World since the onset of the Quaternary (2.6 million years ago). In contrast, Old World palms show a Quaternary increase in transition rates towards evolving small fruits from megafaunal fruits. We suggest that Quaternary climate oscillations and concurrent habitat fragmentation and defaunation of megafaunal frugivores in the New World have reduced seed dispersal distances and geographical ranges of palms with megafaunal fruits, resulting in their extinction. The increasing adaptation to smaller fruits in the Old World could reflect selection for seed dispersal by ocean-crossing frugivores (e.g. medium-sized birds and bats) to colonize Indo-Pacific islands against a background of Quaternary sea-level fluctuations. Our macro-evolutionary results suggest that megafaunal fruits are increasingly being lost from tropical ecosystems, either due to extinctions or by adapting to smaller fruit sizes.</p

    Characterization of Hoplolaimus seinhorsti and Hoplolaimus pararobustus (Tylenchina: Hoplolaimidae) from banana, with phylogeny and species delineation in the genus Hoplolaimus

    Get PDF
    Open Access ArticleThe morphological and molecular characterisations of two lance nematode species isolated from the rhizosphere of banana, Hoplolaimus seinhorsti and H. pararobustus, are provided based on an integrative study that includes light and scanning electron microscopy, phylogenetic analysis and two tree-based molecular species delimitation methods (GMYC and bPTP). Nineteen new sequences were obtained, including 5 partial 18S rRNA, 6 D2-D3 of 28S rRNA, 1 ITS rRNA and 7 COI mtDNA (the first COI sequences of H. seinhorsti and H. pararobustus), and an updated morphological character comparison of 37 Hoplolaimus species is presented. The tree-based molecular species-delimitation approaches employed gave markedly differing results, and also showed remarkable discrepancies among the investigated genes, although the bPTP output was found to agree well with established morphological species delimitations. Both species-delimitation approaches did, however, provide the same output for the COI mtDNA sequences, and the COI mtDNA gene sequence was also found to correspond better to established morphological species. It is therefore recommended by this paper as representing the most suitable barcode marker for Hoplolaimus species identification. This integrative study also resulted in the corrective reassignment of 17 gene sequences that were previously unidentified or incorrectly classified, as well as concluding that H. pararobustus consists of two cryptic species

    Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells

    Get PDF
    Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to onethird of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites and are promising approaches for antigen preparation in vaccine development
    corecore