79 research outputs found

    Model-based scenarios for achieving net negative emissions in the food system

    Get PDF
    Most climate mitigation scenarios point to a combination of GHG emission reductions and CO2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO2. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies

    A collaborative review of the current concepts and challenges of anastomotic leaks in colorectal surgery

    Get PDF
    The reduction of the incidence, detection and treatment of anastomotic leakage (AL) continues to challenge the colorectal surgical community. AL is not consistently defined and reported in clinical studies, its occurrence is variably reported and its impact on longterm morbidity and health-care resources has received relatively little attention. Controversy continues regarding the best strategies to reduce the risk. Diagnostic tests lack sensitivity and specificity, resulting in delayed diagnosis and increased morbidity. Intra-operative fluorescence angiography has recently been introduced as a means of real-time assessment of anastomotic perfusion and preliminary evidence suggests that it may reduce the rate of AL. In addition, concepts are emerging about the role of the rectal mucosal microbiome in AL and the possible role of new prophylactic therapies. In January 2016 a meeting of expert colorectal surgeons and pathologists was held in London, UK, to identify the ongoing controversies surrounding AL in colorectal surgery. The outcome of the meeting is presented in the form of research challenges that need to be addressed

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD

    Elicited preferences for components of ocean health in the California Current

    No full text
    As resource management efforts move towards more comprehensive approaches that span multiple sectors and stakeholder groups, decision makers are faced with the challenge of deciding how important each group is, and how much weight their concerns should have, when making decisions. These decisions must be made transparently if they are to have credibility. This paper describes a systematic approach to eliciting such preferences, illustrated through a regional application of the Ocean Health Index in the California Current. The Index provides an ideal case study as it includes a comprehensive set of goals designed to assess the benefits people derive from coasts and oceans. The approach leverages the strengths of two different methods for eliciting preferences, one based on random utility theory and the other on analytical deliberative methodologies. Results showed that the methods were accessible to individuals with diverse backgrounds and, in this case, revealed surprising consensus about fundamental values that may have been missed in deliberations around a specific action, rather than evaluating a spectrum of management priorities. Specifically, individuals, even extractive users, assigned higher weights to cultural and conservation goals compared to extractive ones. The approach offers a general procedure for eliciting explicit preferences through constructive deliberations among diverse stakeholders

    Data from: Characterizing driver-response relationships in marine pelagic ecosystems for improved ocean management

    No full text
    Scientists and resources managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressor. However, a growing body of literature demonstrates that many relationships are non-linear, where small changes in a driver prompt a disproportionately large ecological response. Here we aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focus our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relationships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency - on average 11% more. Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socio-economic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables, but are also associated with local stressors such as overfishing and pollution that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information about threshold responses to guide how other stressors are managed and to adapt to new ocean conditions. As methods to detect and reduce uncertainty around threshold values improve, managers will be able to better understand and account for ubiquitous non-linear relationships
    • 

    corecore