42 research outputs found

    Characterization of cell-type specific responses in C. elegans experiencing misfolded protein stress: How do some cells save themselves while others die?

    Get PDF
    To maintain viability, cells must resolve misfolded protein stress; the inability to do so often triggers cell death, most notably in neurons during neurodegenerative disease. The NAC is a highly conserved translational chaperone essential for protein folding and localization to organelles throughout the cell. In C. elegans, depletion of the NAC initiates misfolded protein stress specifically in the endoplasmic reticulum, inducing a response that upregulates the HSP-4 chaperone in an attempt to prevent cell death. This upregulation is robust but not uniform, and deficient in regions containing neurons. We are characterizing this non-uniform stress response to determine if HSP-4 upregulation is cell-specific and correlates with survival. Additionally, there is evidence that the NAC may function in engaging premature and/or atypical differentiation under stress conditions. We’ve developed a protocol that characterizes the differentiation patterns and stress responses in NAC-depleted C. elegans. Our results indicate that NAC-depleted C. elegans have altered gut cell differentiation patterns when compared to control treatments. Furthermore, control studies were conducted to determine baseline patterns of HSP-4 expression in relation to the location of gut cells. Future studies will investigate differentiation patterns of muscle and neuronal cells in NAC-depleted C. elegans as well as characterizing the upregulation of HSP-4 in gut, muscle, and neuronal cells within NAC-depleted C. elegans

    A systematic validation of hot Neptunes in TESS data

    Full text link
    We statistically validated a sample of hot Neptune candidates applying a two-step vetting technique using DAVE and TRICERATOPS. We performed a systematic validation of 250 transit-like events in the Transiting Exoplanet Survey Satellite (TESS) archive in the parameter region defined by P≀4P\leq 4 d and 3R⊕≀R≀5R⊕3R_\oplus\leq R\leq 5R_\oplus. Through our analysis, we identified 18 hot Neptune-sized candidates, with a false positive probability <50%<50\%. Nine of these planet candidates still need to be confirmed. For each of the nine targets we retrieved the stellar parameters using ARIADNE and derived constraints on the planetary parameters by fitting the lightcurves with the juliet package. Within this sample of nine candidates, we statistically validated (i.e, with false positive probability < 0.3%0.3\%) two systems (TOI-277 b and TOI-1288 b) by re-processing the candidates with TRICERATOPS along with follow-up observations. These new validated exoplanets expand the known hot Neptunes population and are high-priority targets for future radial velocities follow-up.Comment: 24 pages, 20 figures. Accepted for publication on MNRA

    TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes

    Full text link
    We report the discovery of TOI-1444b, a 1.4-R⊕R_\oplus super-Earth on a 0.47-day orbit around a Sun-like star discovered by {\it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be 3.87±0.71M⊕3.87 \pm 0.71 M_\oplus. The RV dataset also indicates a possible non-transiting, 16-day planet (11.8±2.9M⊕11.8\pm2.9M_\oplus). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {\it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets (<2R⊕<2R_\oplus) and contrast them with the newly discovered sub-day ultra-hot Neptunes (>3R⊕>3R_\oplus, >2000F⊕>2000F_\oplus TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32±\pm0.04; and have masses below the threshold of runaway accretion (∌10M⊕\sim 10M_\oplus), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes (Porbâ‰ČP_{\rm orb} \lesssim1 day) tend to be ``lonely' similar to longer-period hot Neptunes(PorbP_{\rm orb}1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.Comment: Accepted too AJ. 12 Figures, 4 table

    Affectus Hispaniae en la historiografĂ­a del Alto Imperio

    Get PDF
    This paper analyses texts written by Greek and Latin High Empire historians dealing with Hispania. Some of the authors have a very positive view (Florus, Iustinus, Appian) while others are clearly negative (Veleius Paterculus, Valerius Maximus) though most of them show little interest, indifference or variety of opinions. When there is interest in the region or praise, it is because the author comes from Hispania or he is trying to please an emperor born in Hispania, but it could also be due to a universal conception of history revealing a critical attitude towards Roman imperialism, as in Appian. The praise found in Iustinus’s epitome should be attributed to the author of the epitome rather than to Pompeius Trogus. This can be taken as evidence for situating Iustinus’s life and work in the 2nd century A.D. Loathing of Hispania seems to have its origins in conservative, ‘optimate’ nationalist circles, who perceive the province as the ‘popular’ region that acclaimed and welcomed ‘seditious’ individuals such as Tiberius Gracchus and Sertorius.Se estudian en este trabajo los textos de historiadores del Alto Imperio, latinos y griegos, que tratan sobre Hispania. En algunos autores encontramos una visiĂłn muy positiva (Floro, Justino, Apiano) y en otros claramente negativa (Veleyo PatĂ©rculo, Valerio MĂĄximo), aunque en la mayorĂ­a de los casos hay escasa atenciĂłn, indiferencia o diversidad de opiniones. El interĂ©s por la regiĂłn y los elogios pueden estar motivados por el origen hispĂĄnico del autor o su voluntad de agradar a algĂșn emperador oriundo de Hispania, pero tambiĂ©n por una concepciĂłn universal de la historia que denota en ocasiones una posiciĂłn crĂ­tica con el imperialismo romano, como es el caso de Apiano. La alabanza que hallamos en el epĂ­tome de Justino creemos que debe atribuirse mĂĄs al epitomador que a Pompeyo Trogo, lo que apoyarĂ­a una dataciĂłn temprana de la vida y la obra de Justino (s. II d.C.). La aversiĂłn hacia Hispania parece haber surgido en medios conservadores, “optimates” nacionalistas, que ven la provincia como el territorio “popular”, que encumbrĂł y acogiĂł a “sediciosos” como Tiberio Graco y Sertorio

    The TESS-Keck Survey II: An Ultra-Short Period Rocky Planet and its Siblings Transiting the Galactic Thick-Disk Star TOI-561

    Full text link
    We report the discovery of TOI-561, a multi-planet system in the galactic thick disk that contains a rocky, ultra-short period planet (USP). This bright (V=10.2V=10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P=0.44 days, Rb=1.45±0.11 R⊕R_b = 1.45\pm0.11\,R_\oplus), c (TOI-561.01, P=10.8 days, Rc=2.90±0.13 R⊕R_c=2.90\pm0.13\,R_\oplus), and d (TOI-561.03, P=16.3 days, Rd=2.32±0.16 R⊕R_d=2.32\pm0.16\,R_\oplus). The star is chemically ([Fe/H]=−0.41±0.05=-0.41\pm0.05, [α\alpha/H]=+0.23±0.05=+0.23\pm0.05) and kinematically consistent with the galactic thick disk population, making TOI-561 one of the oldest (10±3 10\pm3\,Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2±0.8 M⊕3.2\pm0.8\,M_\oplus and 5.5−1.6+2.0 5.5^{+2.0}_{-1.6}\,g \,cm−3^{-3}, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0±2.3 M⊕7.0\pm2.3\,M_\oplus and 1.6±0.6 1.6\pm0.6\,g \,cm−3^{-3}, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies.Comment: Accepted at The Astronomical Journal; 25 pages, 10 figure

    A pair of TESS planets spanning the radius valley around the nearby mid-M dwarf LTT 3780

    Get PDF
    We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V=13.07V=13.07, Ks=8.204K_s=8.204, RsR_s=0.374 R⊙_{\odot}, MsM_s=0.401 M⊙_{\odot}, d=22 pc). The two planet candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of Pb=0.77P_b=0.77 days, Pc=12.25P_c=12.25 days and sizes rp,b=1.33±0.07r_{p,b}=1.33\pm 0.07 R⊕_{\oplus}, rp,c=2.30±0.16r_{p,c}=2.30\pm 0.16 R⊕_{\oplus}, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses of mp,b=2.62−0.46+0.48m_{p,b}=2.62^{+0.48}_{-0.46} M⊕_{\oplus} and mp,c=8.6−1.3+1.6m_{p,c}=8.6^{+1.6}_{-1.3} M⊕_{\oplus}, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley.Comment: Accepted to AJ. 8 figures, 6 tables. CSV file of the RV measurements (i.e. Table 2) are included in the source cod

    Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST

    Get PDF
    Funding: Funding for the TESS mission is provided by NASA's Science Mission Directorate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial support by JSPS KAKENHI (grant No. JP18H05439) and JST PRESTO (grant No. JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. This paper makes use of data from the MEarth Project, which is a collaboration between Harvard University and the Smithsonian Astrophysical Observatory. The MEarth Project acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grant Nos. AST-0807690, AST-1109468, AST-1616624 and AST-1004488 (Alan T. Waterman Award), the National Aeronautics and Space Administration under grant No. 80NSSC18K0476 issued through the XRP Program, and the John Templeton Foundation. C.M. would like to gratefully acknowledge the entire Dragonfly Telephoto Array team, and Bob Abraham in particular, for allowing their telescope bright time to be put to use observing exoplanets. B.J.H. acknowledges support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (grant No. 80NSSC20K1551) and support by NASA under grant No. 80GSFC21M0002. K.A.C. and C.N.W. acknowledge support from the TESS mission via subaward s3449 from MIT. D.R.C. and C.A.C. acknowledge support from NASA through the XRP grant No. 18-2XRP18_2-0007. C.A.C. acknowledges that this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.Z. and A.B. acknowledge support from the Israel Ministry of Science and Technology (grant No. 3-18143). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant No. PDR T.0120.21. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant No. T.0109.20 and by the Francqui Foundation. H.P.O.'s contribution has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grant Nos. 51NF40_182901 and 51NF40_205606. F.J.P. acknowledges financial support from the grant No. CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. A.J. acknowledges support from ANID—Millennium Science Initiative—ICN12_009 and from FONDECYT project 1210718. Z.L.D. acknowledges the MIT Presidential Fellowship and that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1745302. P.R. acknowledges support from the National Science Foundation grant No. 1952545. This work is partly supported by JSPS KAKENHI grant Nos. JP17H04574, JP18H05439, JP21K20376; JST CREST grant No. JPMJCR1761; and Astrobiology Center SATELLITE Research project AB022006. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. D.D. acknowledges support from TESS Guest Investigator Program grant Nos. 80NSSC22K1353, 80NSSC22K0185, and 80NSSC23K0769. A.B. acknowledges the support of M.V. Lomonosov Moscow State University Program of Development. T.D. was supported in part by the McDonnell Center for the Space Sciences. V.K. acknowledges support from the youth scientific laboratory project, topic FEUZ-2020-0038.JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Peer reviewe

    The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R ⊕ to 1.6 R ⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18

    Get PDF
    Planets occur most frequently around cool dwarfs, but only a handful of specific examples are known to orbit the latest-type M stars. Using TESS photometry, we report the discovery of two planets transiting the low-mass star called LP 791-18 (identified by TESS as TOI 736). This star has spectral type M6V, effective temperature 2960 K, and radius 0.17 R o, making it the third-coolest star known to host planets. The two planets straddle the radius gap seen for smaller exoplanets; they include a 1.1R ⊕ planet on a 0.95 day orbit and a 2.3R ⊕ planet on a 5 day orbit. Because the host star is small the decrease in light during these planets' transits is fairly large (0.4% and 1.7%). This has allowed us to detect both planets' transits from ground-based photometry, refining their radii and orbital ephemerides. In the future, radial velocity observations and transmission spectroscopy can both probe these planets' bulk interior and atmospheric compositions, and additional photometric monitoring would be sensitive to even smaller transiting planets
    corecore