15 research outputs found

    Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    Get PDF
    Background: Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results: All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion: Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms were also identified that warrant further investigation. Metabolic genes were over expressed irrespective of the presence of kdr, the latter resistance mechanism being absent in one resistant population. The discovery that mosquitoes collected from different types of breeding sites display differing profiles of metabolic genes at the adult stage may reflect the influence of a range of xenobiotics on selecting for resistance in mosquitoes

    Does the spillage of petroleum products in Anopheles breeding sites have an impact on the pyrethroid resistance?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence of <it>Anopheles </it>populations capable of withstanding lethal doses of insecticides has weakened the efficacy of most insecticide based strategies of vector control and, has highlighted the need for further studies on the mechanisms of insecticide resistance and the various factors selecting resistant populations of mosquitoes. This research targeted the analysis of breeding sites and the oviposition behaviour of susceptible and resistant populations of <it>Anopheles </it>in localities of spilled petroleum products. The aim was to establish the possible contribution of oil spillage in the selection of pyrethroid resistance in malaria vectors.</p> <p>Methods</p> <p><it>Anopheles </it>breeding sites were identified and the insecticide susceptibility of the <it>Anopheles gambiae </it>populations mapped in 15 localities of South Western Nigeria. The presence of oil particles as well as the turbidity, the dissolved oxygen and the pH of each identified breeding site was recorded. Data were cross-analysed to correlate the habitat types and the insecticide susceptibility status of emerging mosquitoes. The second phase of this study was basically a laboratory model to provide more information on the implication of the spillage of petroleum on the selection of pyrethroid resistance in <it>An. gambiae</it>.</p> <p>Results</p> <p>Moderate levels of resistance following exposure to permethrin-impregnated papers were recorded with the majority of <it>An. gambiae </it>samples collected in the South Western Nigeria. Data from this study established a link between the constituency of the breeding sites and the resistance status of the emerging <it>Anopheles</it>.</p> <p>Conclusion</p> <p>This study has revealed the segregational occupation of breeding habitats by pyrethroid resistant and susceptible strains of <it>An. gambiae </it>in south-western Nigeria. Compiled results from field and laboratory research point out clear relationships between oil spillage and pyrethroid resistance in malaria vectors. The identification of this factor of resistance could serve as strong information in the management of insecticide resistance in some West African settings.</p

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Policy and competitiveness of agroforestry-based technologies for maize production in Cameroon: An application of policy analysis matrix

    No full text
    Questions have been raised about the ecological consequences and economic sustainability of exclusive reliance on chemical fertilizers for the rapidly expanding maize production across sub-Saharan Africa. Alternative agroforestry-based natural resource management technologies have been developed for farmers. This paper applies the policy analysis matrix (PAM) to analyze the social profitability of agroforestry-based technologies for maize production in the highland savanna zone of Cameroon, and the impacts of policy shifts on the financial competitiveness of maize production under these technologies. The paper shows that maize production under agroforestry-based systems has high comparative advantage. © 1998 Elsevier Science B.V. All rights reserved

    Expression of the cytochrome P450s, <it>CYP6P3 </it>and <it>CYP6M2 </it>are significantly elevated in multiple pyrethroid resistant populations of <it>Anopheles gambiae s.s</it>. from Southern Benin and Nigeria

    No full text
    Abstract Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms were also identified that warrant further investigation. Metabolic genes were over expressed irrespective of the presence of kdr, the latter resistance mechanism being absent in one resistant population. The discovery that mosquitoes collected from different types of breeding sites display differing profiles of metabolic genes at the adult stage may reflect the influence of a range of xenobiotics on selecting for resistance in mosquitoes.</p

    Number of eggs laid by susceptible and resistant strains of in oily and non oily breeding sites

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Does the spillage of petroleum products in breeding sites have an impact on the pyrethroid resistance?"</p><p>http://www.malariajournal.com/content/6/1/159</p><p>Malaria Journal 2007;6():159-159.</p><p>Published online 3 Dec 2007</p><p>PMCID:PMC2222605.</p><p></p

    Mapping of susceptibility to pyrethroid (permethrin) in the South Western Nigeria

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Does the spillage of petroleum products in breeding sites have an impact on the pyrethroid resistance?"</p><p>Malaria Journal 2007;6():159-159.</p><p>Published online 3 Dec 2007</p><p>PMCID:PMC2222605.</p><p></p
    corecore