3,732 research outputs found

    Effect of supervised exercise on physical function and balance in patients with intermittent claudication

    Get PDF
    Background The aim of the study was to identify whether a standard supervised exercise programme (SEP) for patients with intermittent claudication improved specific measures of functional performance including balance. Methods A prospective observational study was performed at a single tertiary vascular centre. Patients with symptomatic intermittent claudication (Rutherford grades 1–3) were recruited to the study. Participants were assessed at baseline (before SEP) and 3, 6 and 12 months afterwards for markers of lower-limb ischaemia (treadmill walking distance and ankle : brachial pressure index), physical function (6-min walk, Timed Up and Go test, and Short Physical Performance Battery (SPPB) score), balance impairment using computerized dynamic posturography with the Sensory Organization Test (SOT), and quality of life (VascuQoL and Short Form 36). Results Fifty-one participants underwent SEP, which significantly improved initial treadmill walking distance (P = 0·001). Enrolment in a SEP also resulted in improvements in physical function as determined by 6-min maximum walking distance (P = 0·006), SPPB score (P < 0·001), and some domains of both generic (bodily pain, P = 0·025) and disease-specific (social domain, P = 0·039) quality of life. Significant improvements were also noted in balance, as determined by the SOT (P < 0·001). Conclusion Supervised exercise improves both physical function and balance impairment

    Composite Reflective/Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    Full text link
    Infrared (IR) blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency selective structures on silicon and a thin (50 μm\mu \textrm{m} thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects \sim50\% of the incoming light and blocks \textgreater 99.8\% of the total power with negligible thermal gradients and excellent low frequency transmission. This allows for a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1\%, and the in-band absorption of the powder mix is below 1\% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements

    Hacer frente a los desafíos de una fuerza laboral que envejece con el uso de tecnologías usables y la auto-cuantificación

    Get PDF
    The world's population is aging at an unprecedented rate, this demographic shift will change all aspects of life, including work. The aging of the worforce and a higher percentage of workers who will work past traditional retirement years presents significant challenges and opportunities for employers. Older workers are a valuable resource, but in order to ensure they stay in good health, prevention will be key. Wearable technologies are quickly becoming ubiquitous, individuals are turning to them to monitor health, activities and hundreds of other quantifiable occurences. Wearable technologies could provide a new means for employers to tackle the challenges associated with an aging workforce by creating a wide spectrum of opportunities to intervene in terms of aging employees and extend their working lives by keeping them safe and healthy through prevention. Employers are already making standing desks available, and encouraging lunch time exercise, is it feasible for Wearables to make the jump from a tool for individuals to a method for employers to ensure better health, well-being and safety for their employees? The aim of this work is to lay out the implications for such interventions with Wearable technologies (monitoring health and well-being, oversight and safety, and mentoring and training) and challenges (privacy, acceptability, and scalability). While an ageing population presents significant challenges, including an aging work force, this demographic change should be seen, instead, as an opportunity rethink and innovate workplace health and take advantage of the experience of older workers. The Quantified-Self and Wearables can leverage interventions to improve employees’ health, safety and well-being.La población mundial está envejeciendo a un ritmo sin precedentes. El envejecimiento y un mayor porcentaje de trabajadores que trabajan más allá de los años de jubilación presentan importantes desafíos y oportunidades. Los trabajadores mayores son un recurso valioso, pero a fin de garantizar que permanezcan en buen estado de salud, la prevención será la clave. Tecnologías portátiles, ó wearables, están proporcionando un medio para hacer frente a el envejecimiento mediante la creación de un amplio espectro de oportunidades para intervenir y para prolongar la vida laboral de los colaboradores, mantenendoles seguros y saludables. El objetivo de este trabajo es exponer las implicaciones de este tipo de intervenciones con wearables (Control de salud, vigilancia, seguridad, y formación) y los desafíos (privacidad, aceptabilidad y escalabilidad). Los wearables pueden aprovechar y fortalecer las intervenciones para mejorar la salud, seguridad y el bienestar de los empleados.Martin Lavallière was supported by a postdoctoral research grant - Recherche en sécurité routière : Fonds de recherche du Québec - Société et culture (FRQSC), Société de l'assurance automobile du Québec (SAAQ), Fonds de recherche du Québec - Santé (FRQS). This work was partially developed with the financial support of the Luso-American Development Foundation - FLAD, through the research grant ref. rv14022, and of the MIT Portugal Program

    Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor

    Get PDF
    We describe measurements of the rotational component of teleseismic surface waves using an inertial high-precision ground-rotation-sensor installed at the LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad/Hz/ \sqrt{\rm Hz} at 50 mHz and a translational coupling of less than 1 μ\murad/m enabling translation-free measurement of small rotations. We present observations of the rotational motion from Rayleigh waves of six teleseismic events from varied locations and with magnitudes ranging from M6.7 to M7.9. These events were used to estimate phase dispersion curves which shows agreement with a similar analysis done with an array of three STS-2 seismometers also located at LHO

    Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning

    Get PDF
    The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project \emph{Gravity Spy} has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGO's second observing run (O2), we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program

    Self-organization of stabilized microtubules by both spindle and midzone mechanisms in Xenopus egg cytosol

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 24 (2013): 1559-1573, doi:10.1091/mbc.E12-12-0850.Previous study of self-organization of Taxol-stabilized microtubules into asters in Xenopus meiotic extracts revealed motor-dependent organizational mechanisms in the spindle. We revisit this approach using clarified cytosol with glycogen added back to supply energy and reducing equivalents. We added probes for NUMA and Aurora B to reveal microtubule polarity. Taxol and dimethyl sulfoxide promote rapid polymerization of microtubules that slowly self-organize into assemblies with a characteristic morphology consisting of paired lines or open circles of parallel bundles. Minus ends align in NUMA-containing foci on the outside, and plus ends in Aurora B–containing foci on the inside. Assemblies have a well-defined width that depends on initial assembly conditions, but microtubules within them have a broad length distribution. Electron microscopy shows that plus-end foci are coated with electron-dense material and resemble similar foci in monopolar midzones in cells. Functional tests show that two key spindle assembly factors, dynein and kinesin-5, act during assembly as they do in spindles, whereas two key midzone assembly factors, Aurora B and Kif4, act as they do in midzones. These data reveal the richness of self-organizing mechanisms that operate on microtubules after they polymerize in meiotic cytoplasm and provide a biochemically tractable system for investigating plus-end organization in midzones.Our work was funded primarily by National Institutes of Health Grant GM23928

    Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools

    Get PDF
    This report focuses on financial options developed specifically for renewable energy and energy efficiency projects in three California public school districts. Solar energy systems installed on public schools have a number of benefits that include utility bill savings, reductions in greenhouse gas emissions (GHGs) and other toxic air contaminants, job creation, demonstrating environmental leadership, and creating learning opportunities for students. In the 2011 economic environment, the ability to generate general-fund savings as a result of reducing utility bills has become a primary motivator for school districts trying to cut costs. To achieve meaningful savings, the size of the photovoltaic (PV) systems installed (both individually on any one school and collectively across a district) becomes much more important; larger systems are required to have a material impact on savings. Larger PV systems require a significant financial commitment and financing therefore becomes a critical element in the transaction. In simple terms, school districts can use two primary types of ownership models to obtain solar installations and cost savings across a school district. The PV installations can be financed and owned directly by the districts themselves. Alternatively, there are financing structures whereby another entity, such as a solar developer or its investors, actually own and operate the PV systems on behalf of the school district. This is commonly referred to as the 'third-party ownership model.' Both methods have advantages and disadvantages that should be weighed carefully
    corecore