9,305 research outputs found

    The apparent shape of the "Str\"omgren sphere'' around the highest-redshift QSOs with Gunn-Peterson troughs

    Full text link
    Although the highest redshift QSOs (z>6.1) are embedded in a significantly neutral background universe (mass-averaged neutral hydrogen fraction >1%) as suggested by the Gunn-Peterson absorption troughs in their spectra, the intergalactic medium in their vicinity is highly ionized. The highly ionized region is generally idealized as spherical and called the Str\"omgren sphere. In this paper, by combining the expected evolution of the Str\"omgren sphere with the rule that the speed of light is finite, we illustrate the apparent shape of the ionization fronts around the highest redshift QSOs and its evolution, which depends on the age, luminosity evolution, and environment of the QSO (e.g., the hydrogen reionization history). The apparent shape may systematically deviate from a spherical shape, unless the QSO age is significantly long compared to the hydrogen recombination process within the ionization front and the QSO luminosity evolution is significantly slow. Effects of anisotropy of QSO emission are also discussed. The apparent shape of the "Str\"omgren sphere'' may be directly mapped by transmitted spectra of background sources behind or inside the ionized regions or by surveys of the hyperfine transition (21cm) line emission of neutral hydrogen.Comment: 7 pages, 5 figures; discussion on effects of anisotropy of QSO emission expanded; ApJ in pres

    The luminosity evolution over the EQuiTemporal Surfaces in the prompt emission of Gamma-Ray Bursts

    Full text link
    Due to the ultrarelativistic velocity of the expanding "fireshell" (Lorentz gamma factor \gamma \sim 10^2 - 10^3), photons emitted at the same time from the fireshell surface do not reach the observer at the same arrival time. In interpreting Gamma-Ray Bursts (GRBs) it is crucial to determine the properties of the EQuiTemporal Surfaces (EQTSs): the locus of points which are source of radiation reaching the observer at the same arrival time. In the current literature this analysis is performed only in the latest phases of the afterglow. Here we study the distribution of the GRB bolometric luminosity over the EQTSs, with special attention to the prompt emission phase. We analyze as well the temporal evolution of the EQTS apparent size in the sky. We use the analytic solutions of the equations of motion of the fireshell and the corresponding analytic expressions of the EQTSs which have been presented in recent works and which are valid for both the fully radiative and the adiabatic dynamics. We find the novel result that at the beginning of the prompt emission the most luminous regions of the EQTSs are the ones closest to the line of sight. On the contrary, in the late prompt emission and in the early afterglow phases the most luminous EQTS regions are the ones closest to the boundary of the visible region. This transition in the emitting region may lead to specific observational signatures, i.e. an anomalous spectral evolution, in the rising part or at the peak of the prompt emission. We find as well an expression for the apparent radius of the EQTS in the sky, valid in both the fully radiative and the adiabatic regimes. Such considerations are essential for the theoretical interpretation of the prompt emission phase of GRBs.Comment: 11 pages, 5 figures, in the Proceedings of the 1st Galileo-Xu GuangQi Meeting, October 26-30, 2009, Shangha

    Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape

    Get PDF
    We experimentally demonstrate spatial beam self-cleaning and supercontinuum generation in a tapered Ytterbium-doped multimode optical fiber with parabolic core refractive index profile when 1064 nm pulsed beams propagate from wider (122 µm) into smaller (37 µm) diameter. In the passive mode, increasing the input beam peak power above 20 kW leads to a bell-shaped output beam profile. In the active configuration, gain from the pump laser diode permits to combine beam self-cleaning with supercontinuum generation between 520-2600 nm. By taper cut-back, we observed that the dissipative landscape, i.e., a non-monotonic variation of the average beam power along the MMF, leads to modal transitions of self-cleaned beams along the taper length

    Quelques aspects de la pathologie des petits ruminants en Guadeloupe et en Martinique

    Get PDF
    Quelques résultats préliminaires provenant de diagnostics de laboratoire et d'enquêtes apportent les indications suivantes : la coccidiose joue vraisemblablement un rôle important dans le parasitisme gastro-intestinal des petits ruminants, jeunes et adultes; la toxoplasmose et la fièvre Q interviennent dans les avortements et les mortinatalités; si la dermatophilose des chèvres ne provoque que des lésions localisées en Guadeloupe, celle des moutons revêt un caractère extensif et mortel en Martinique; la fièvre catarrhale existe en Guadeloupe mais son impact n'est pas connu, ni celui de l'anaplasmose. Par contre la trypanosomose a disparu de Guadeloupe et de Martiniqu

    Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration

    Get PDF
    We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering

    Spatiotemporal Characterization of Supercontinuum Extending from the Visible to the Mid-Infrared in Multimode Graded-Index Optical Fiber

    Get PDF
    We experimentally demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat supercontinuum generation with a uniform bell-shaped spatial beam profile extending from the visible to the mid-infrared at 2500\,nm. We study the development of the supercontinuum along the multimode fiber by the cut-back method, which permits us to analyze the competition between the Kerr-induced geometric parametric instability and stimulated Raman scattering. We also performed a spectrally resolved temporal analysis of the supercontinuum emission.Comment: 5 pages 7 figure

    Intra-cavity frequency shifted laser pumps for non-degenerate and partially coherent Bragg-Scattering FWM in nonlinear fiber

    Get PDF
    International audienceIn this work the authors experimentally study the problem of non-degenerate four-wave-mixing (FWM) by using a pair of partially coherent pumps, and focus our attention on a specific type of FWM, which is generally called "Bragg-Scattering" (BS-FWM). This kind of FWM has attracted a renewed interest because of its intrinsically low-noise nature which makes it potentially applicable for light-by-light manipulation even for very faint signals such as quantum keys

    Four-Wave Mixing in Nonlinear Fiber with Two Intra-Cavity Frequency-Shifted Laser Pumps

    Get PDF
    We experimentally study Bragg-type four-wave mixing frequency conversion in highly nonlinear fibers by using two independent frequency-shifted-feedback lasers. We obtain frequency conversion with partial coherent pumps when both lasers operate in the continuous-wave regime. Our experimental results compare well with numerical simulations, which take into account partial coherence of the two pumps

    SN 2007od: A Type IIP SN with Circumstellar Interaction

    Get PDF
    SN 2007od exhibits characteristics that have rarely been seen in a Type IIP supernova (SN). Optical V band photometry reveals a very steep brightness decline between the plateau and nebular phases of ~4.5 mag, likely due to SN 2007od containing a low mass of 56Ni. The optical spectra show an evolution from normal Type IIP with broad Halpha emission, to a complex, four component Halpha emission profile exhibiting asymmetries caused by dust extinction after day 232. This is similar to the spectral evolution of the Type IIn SN 1998S, although no early-time narrow (~200 km s-1) Halpha component was present in SN 2007od. In both SNe, the intermediate-width Halpha emission components are thought to arise in the interaction between the ejecta and its circumstellar medium (CSM). SN 2007od also shows a mid-IR excess due to new dust. The evolution of the Halpha profile and the presence of the mid-IR excess provide strong evidence that SN 2007od formed new dust before day 232. Late-time observations reveal a flattening of the visible lightcurve. This flattening is a strong indication of the presence of a light echo, which likely accounts for much of the broad, underlying Halpha component seen at late-times. We believe the multi-peaked Halpha emission is consistent with the interaction of the ejecta with a circumstellar ring or torus (for the inner components at \pm1500 km s-1), and a single blob or cloud of circumstellar material out of the plane of the CSM ring (for the outer component at -5000 km s-1). The most probable location for the formation of new dust is in the cool dense shell created by the interaction between the expanding ejecta and its CSM. Monte Carlo radiative transfer modeling of the dust emission from SN 2007od implies that up to 4x 10-4Msun of new dust has formed. This is similar to the amounts of dust formed in other CCSNe such as SNe 1999em, 2004et, and 2006jc.Comment: 35 pages, 6 figures. Accepted for publication in Ap
    corecore