28 research outputs found
Evolutionary Robot Swarms Under Real-World Constraints
Tese de doutoramento em Engenharia Electrotécnica
e de Computadores, na especialidade de Automação e Robótica, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de CoimbraNas últimas décadas, vários cientistas e engenheiros têm vindo a estudar as estratégias provenientes da natureza. Dentro das arquiteturas biológicas, as sociedades que vivem em enxames revelam que agentes simplistas, tais como formigas ou pássaros, são capazes de realizar tarefas complexas usufruindo de mecanismos de cooperação. Estes sistemas abrangem todas as condições necessárias para a sobrevivência, incorporando comportamentos de cooperação, competição e adaptação. Na “batalha” sem fim em prol do progresso dos mecanismos artificiais desenvolvidos pelo homem, a ciência conseguiu simular o primeiro comportamento em enxame no final dos anos oitenta. Desde então, muitas outras áreas, entre as quais a robótica, beneficiaram de mecanismos de tolerância a falhas inerentes da inteligência coletiva de enxames.
A área de investigação deste estudo incide na robótica de enxame, consistindo num domínio particular dos sistemas robóticos cooperativos que incorpora os mecanismos de inteligência coletiva de enxames na robótica. Mais especificamente, propõe-se uma solução completa de robótica de enxames a ser aplicada em contexto real. Nesta ótica, as operações de busca e salvamento foram consideradas como o caso de estudo principal devido ao nível de complexidade associado às mesmas. Tais operações ocorrem tipicamente em cenários dinâmicos de elevadas dimensões, com condições adversas que colocam em causa a aplicabilidade dos sistemas robóticos cooperativos. Este estudo centra-se nestes problemas, procurando novos desafios que não podem ser ultrapassados através da simples adaptação da literatura da especialidade em algoritmos de enxame, planeamento, controlo e técnicas de tomada de decisão.
As contribuições deste trabalho sustentam-se em torno da extensão do método Particle Swarm Optimization (PSO) aplicado a sistemas robóticos cooperativos, denominado de Robotic Darwinian Particle Swarm Optimization (RDPSO). O RDPSO consiste numa arquitetura robótica de enxame distribuída que beneficia do particionamento dinâmico da população de robôs utilizando mecanismos evolucionários de exclusão social baseados na sobrevivência do mais forte de Darwin. No entanto, apesar de estar assente no caso de estudo do RDPSO, a aplicabilidade dos conceitos aqui propostos não se encontra restrita ao mesmo, visto que todos os algoritmos parametrizáveis de enxame de robôs podem beneficiar de uma abordagem idêntica.
Os fundamentos em torno do RDPSO são introduzidos, focando-se na dinâmica dos robôs, nos constrangimentos introduzidos pelos obstáculos e pela comunicação, e nas suas propriedades evolucionárias. Considerando a colocação inicial dos robôs no ambiente como algo fundamental para aplicar sistemas de enxames em aplicações reais, é assim introduzida uma estratégia de colocação de robôs realista. Para tal, a população de robôs é dividida de forma hierárquica, em que são utilizadas plataformas mais robustas para colocar as plataformas de enxame no cenário de forma autónoma. Após a colocação dos robôs no cenário, é apresentada uma estratégia para permitir a criação e manutenção de uma rede de comunicação móvel ad hoc com tolerância a falhas. Esta estratégia não considera somente a distância entre robôs, mas também a qualidade do nível de sinal rádio frequência, redefinindo assim a sua aplicabilidade em cenários reais. Os aspetos anteriormente mencionados estão sujeitos a uma análise detalhada do sistema de comunicação inerente ao algoritmo, para atingir uma implementação mais escalável do RDPSO a cenários de elevada complexidade. Esta elevada complexidade inerente à dinâmica dos cenários motivaram a ultimar o desenvolvimento do RDPSO, integrando para o efeito um mecanismo adaptativo baseado em informação contextual (e.g., nível de atividade do grupo).
Face a estas considerações, o presente estudo pode contribuir para expandir o estado-da-arte em robótica de enxame com algoritmos inovadores aplicados em contexto real. Neste sentido, todos os métodos propostos foram extensivamente validados e comparados com alternativas, tanto em simulação como com robôs reais. Para além disso, e dadas as limitações destes (e.g., número limitado de robôs, cenários de dimensões limitadas, constrangimentos reais limitados), este trabalho contribui ainda para um maior aprofundamento do estado-da-arte, onde se propõe um modelo macroscópico capaz de capturar a dinâmica inerente ao RDPSO e, até certo ponto, estimar analiticamente o desempenho coletivo dos robôs perante determinada tarefa.
Em suma, esta investigação pode ter aplicabilidade prática ao colmatar a lacuna que se faz sentir no âmbito das estratégias de enxames de robôs em contexto real e, em particular, em cenários de busca e salvamento.Over the past decades, many scientists and engineers have been studying nature’s best and time-tested
patterns and strategies. Within the existing biological architectures, swarm societies revealed that
relatively unsophisticated agents with limited capabilities, such as ants or birds, were able to cooperatively
accomplish complex tasks necessary for their survival. Those simplistic systems embrace all
the conditions necessary to survive, thus embodying cooperative, competitive and adaptive behaviours.
In the never-ending battle to advance artificial manmade mechanisms, computer scientists simulated
the first swarm behaviour designed to mimic the flocking behaviour of birds in the late eighties.
Ever since, many other fields, such as robotics, have benefited from the fault-tolerant mechanism
inherent to swarm intelligence.
The area of research presented in this Ph.D. Thesis focuses on swarm robotics, which is a particular
domain of multi-robot systems (MRS) that embodies the mechanisms of swarm intelligence
into robotics. More specifically, this Thesis proposes a complete swarm robotic solution that can be
applied to real-world missions. Although the proposed methods do not depend on any particular application,
search and rescue (SaR) operations were considered as the main case study due to their
inherent level of complexity. Such operations often occur in highly dynamic and large scenarios, with
harsh and faulty conditions, that pose several problems to MRS applicability. This Thesis focuses on
these problems raising new challenges that cannot be handled appropriately by simple adaptation of
state-of-the-art swarm algorithms, planning, control and decision-making techniques.
The contributions of this Thesis revolve around an extension of the Particle Swarm Optimization
(PSO) to MRS, denoted as Robotic Darwinian Particle Swarm Optimization (RDPSO). The RDPSO
is a distributed swarm robotic architecture that benefits from the dynamical partitioning of the whole
swarm of robots by means of an evolutionary social exclusion mechanism based on Darwin’s survival-of-the-fittest.
Nevertheless, although currently applied solely to the RDPSO case study, the applicability
of all concepts herein proposed is not restricted to it, since all parameterized swarm robotic
algorithms may benefit from a similar approach The RDPSO is then proposed and used to devise the applicability of novel approaches. The fundamentals
around the RDPSO are introduced by focusing on robots’ dynamics, obstacle avoidance,
communication constraints and its evolutionary properties. Afterwards, taking the initial deployment
of robots within the environment as a basis for applying swarm robotics systems into real-world applications,
the development of a realistic deployment strategy is proposed. For that end, the population
of robots is hierarchically divided, wherein larger support platforms autonomously deploy
smaller exploring platforms in the scenario, while considering communication constraints and obstacles.
After the deployment, a way of ensuring a fault-tolerant multi-hop mobile ad hoc communication
network (MANET) is introduced to explicitly exchange information needed in a collaborative realworld
task execution. Such strategy not only considers the maximum communication range between
robots, but also the minimum signal quality, thus refining the applicability to real-world context. This
is naturally followed by a deep analysis of the RDPSO communication system, describing the dynamics
of the communication data packet structure shared between teammates. Such procedure is a
first step to achieving a more scalable implementation by optimizing the communication procedure
between robots. The highly dynamic characteristics of real-world applications motivated us to ultimate
the RDPSO development with an adaptive strategy based on a set of context-based evaluation
metrics.
This thesis contributes to the state-of-the-art in swarm robotics with novel algorithms for realworld
applications. All of the proposed approaches have been extensively validated in benchmarking
tasks, in simulation, and with real robots. On top of that, and due to the limitations inherent to those
(e.g., number of robots, scenario dimensions, real-world constraints), this Thesis further contributes
to the state-of-the-art by proposing a macroscopic model able to capture the RDPSO dynamics and,
to some extent, analytically estimate the collective performance of robots under a certain task. It is
the author’s expectation that this Ph.D. Thesis may shed some light into bridging the reality gap
inherent to the applicability of swarm strategies to real-world scenarios, and in particular to SaR operations.FCT - SFRH/BD /73382/201
Fusing sonars and LRF data to perform SLAM in reduced visibility scenarios
Simultaneous Localization and Mapping (SLAM) approaches have evolved considerably in recent years. However, there are many situations which are not easily handled, such as the case of smoky, dusty, or foggy environments where commonly used range sensors for SLAM are highly disturbed by noise induced in the measurement process by particles of smoke, dust or steam. This work presents a sensor fusion method for range sensing in Simultaneous Localization and Mapping (SLAM) under reduced visibility conditions. The proposed method uses the complementary characteristics between a Laser Range Finder (LRF) and an array of sonars in order to ultimately map smoky environments. The method was validated through experiments in a smoky indoor scenario, and results showed that it is able to adequately cope with induced disturbances, thus decreasing the impact of smoke particles in the mapping task
Using Optical Tracking System Data to Measure Team Synergic Behavior: Synchronization of Player-Ball-Goal Angles in a Football Match
The ecological dynamics approach to interpersonal relationships provides theoretical support to the use of kinematic data, obtained with sensor-based systems, in which players of a team are linked mainly by information from the performance environment. Our goal was to capture the properties of synergic behavior in football, using spatiotemporal data from one match of the 2018 FIFA WORLD CUP RUSSIA, to explore the application of player-ball-goal angles in cluster phase analysis. Linear mixed effects models were used to test the statistical significance of different effects, such as: team, half(-time), role and pitch zones. Results showed that the cluster phase values (synchronization) for the home team, had a 3.812×10-2±0.536×10-2 increase with respect to the away team (X2(41)=259.8, p<0.001) and that changing the role from with ball to without ball increased synchronization by 16.715×10-2±0.283×10-2 (X2(41)=12227.0, p<0.001). The interaction between effects was also significant. The player-team relative phase, the player-ball-goal angles relative frequency and the team configurations, showed that variations of synchronization might indicate critical performance changes (ball possession changes, goals scored, etc.). This study captured the ongoing player-environment link and the properties of team synergic behavior, supporting the use of sensor-based data computations in the development of relevant indicators for tactical analysis in sports.info:eu-repo/semantics/publishedVersio
A sensor fusion layer to cope with reduced visibility in SLAM
Mapping and navigating with mobile robots in scenarios with reduced visibility, e.g. due to smoke, dust, or fog, is still a big challenge nowadays. In spite of the tremendous advance on Simultaneous Localization and Mapping (SLAM) techniques for the past decade, most of current algorithms fail in those environments because they usually rely on optical sensors providing dense range data, e.g. laser range finders, stereo vision, LIDARs, RGB-D, etc., whose measurement process is highly disturbed by particles of smoke, dust, or steam. This article addresses the problem of performing SLAM under reduced visibility conditions by proposing a sensor fusion layer which takes advantage from complementary characteristics between a laser range finder (LRF) and an array of sonars. This sensor fusion layer is ultimately used with a state-of-the-art SLAM technique to be resilient in scenarios where visibility cannot be assumed at all times. Special attention is given to mapping using commercial off-the-shelf (COTS) sensors, namely arrays of sonars which, being usually available in robotic platforms, raise technical issues that were investigated in the course of this work. Two sensor fusion methods, a heuristic method and a fuzzy logic-based method, are presented and discussed, corresponding to different stages of the research work conducted. The experimental validation of both methods with two different mobile robot platforms in smoky indoor scenarios showed that they provide a robust solution, using only COTS sensors, for adequately coping with reduced visibility in the SLAM process, thus decreasing significantly its impact in the mapping and localization results obtained
A sensor fusion layer to cope with reduced visibility in SLAM
Mapping and navigating with mobile robots in scenarios with reduced visibility, e.g. due to smoke, dust, or fog, is still a big challenge nowadays. In spite of the tremendous advance on Simultaneous Localization and Mapping (SLAM) techniques for the past decade, most of current algorithms fail in those environments because they usually rely on optical sensors providing dense range data, e.g. laser range finders, stereo vision, LIDARs, RGB-D, etc., whose measurement process is highly disturbed by particles of smoke, dust, or steam. This article addresses the problem of performing SLAM under reduced visibility conditions by proposing a sensor fusion layer which takes advantage from complementary characteristics between a laser range finder (LRF) and an array of sonars. This sensor fusion layer is ultimately used with a state-of-the-art SLAM technique to be resilient in scenarios where visibility cannot be assumed at all times. Special attention is given to mapping using commercial off-the-shelf (COTS) sensors, namely arrays of sonars which, being usually available in robotic platforms, raise technical issues that were investigated in the course of this work. Two sensor fusion methods, a heuristic method and a fuzzy logic-based method, are presented and discussed, corresponding to different stages of the research work conducted. The experimental validation of both methods with two different mobile robot platforms in smoky indoor scenarios showed that they provide a robust solution, using only COTS sensors, for adequately coping with reduced visibility in the SLAM process, thus decreasing significantly its impact in the mapping and localization results obtained
Using artificial intelligence for pattern recognition in a sports context
Optimizing athlete’s performance is one of the most important and challenging aspects of coaching. Physiological and positional data, often acquired using wearable devices, have been useful to identify patterns, thus leading to a better understanding of the game and, consequently, providing the opportunity to improve the athletic performance. Even though there is a panoply of research in pattern recognition, there is a gap when it comes to non-controlled environments, as during sports training and competition. This research paper combines the use of physiological and positional data as sequential features of different artificial intelligence approaches for action recognition in a real match context, adopting futsal as its case study. The traditional artificial neural networks (ANN) is compared with a deep learning method, Long Short-Term Memory Network, and also with the Dynamic Bayesian Mixture Model, which is an ensemble classification method. The methods were used to process all data sequences, which allowed to determine, based on the balance between precision and recall, that Dynamic Bayesian Mixture Model presents a superior performance, with an F1 score of 80.54% against the 33.31% achieved by the Long Short-Term Memory Network and 14.74% achieved by ANN.info:eu-repo/semantics/publishedVersio
Posicionamento angular do atacante em relação ao defensor em futebolistas
O presente estudo objetivou analisar as amplitudes angulares do atacante em relação ao defensor ao longo da série temporal de prática, tentando verificar se tal parâmetro contribui para a quebra da estabilidade da díade atacante-defensor. Participaram 11 futebolistas (17,91 ± 1,04 anos de idade) com 8,6 ± 1,52 de anos de prática. De forma a entender a relação da posição entre o atacante e o defensor, procedeu-se ao cálculo do posicionamento angular entre ambos. Para o efeito, considerou-se o ângulo 0º como sendo o ângulo entre o atacante e o defensor quando estes formam uma linha perpendicular à aresta do campo onde se encontra a baliza estando o defensor mais próximo da mesma. Os resultados indicam uma oscilação regular por parte do atacante no sentido de procurar desequilibrar o oponente sendo que, através dessa ação-reação o atacante procura encontrar novas soluções que resultem da exploração do meio e do adversário.El presente estudio tuvo como objetivo analizar las amplitudes angulares del atacante contra el defensor, tratando de ver si este parámetro contribuye a la ruptura de la estabilidad de la pareja atacante-defensor. Participaron 11 jugadores (17,91 ± 1,04 años), con 8,6 ± 1,52 años de práctica. Con el fin de entender la relación de posición entre el atacante y el defensor, procedió al cálculo de la posición angular entre los dos. Con este fin, hemos considerado el ángulo de 0º como el ángulo entre el delantero y el defensor cuando forman una línea perpendicular a la arista del campo donde se encuentra la portería, estando el defensor está más cerca de la misma. Los resultados muestran una oscilación regular del atacante para tratar de desequilibrar al oponente siendo que a través de esta acción-reacción, el atacante trata de encontrar nuevas soluciones que resultan de la exploración del ambiente y del adversario.The aim of this study was to analyze the angular amplitudes of the attacker over the defender along the series of practice, trying to see if this parameter contributes to the breakdown of the stability of the attacker-defender dyad. In the study participated 11 players (17.91 ± 1.04 years old) with 8.6 ± 1.52 years of practice. In order to understand the position relationship between the attacker and defender, we calculate the angular positioning between them. For this purpose we considered the 0º angle as the angle between the striker and the defender when they form a perpendicular line to the edge of the field where staying the goal. The results show a regular oscillation by the attacker to seek to unbalance the opponent and that through this action-reaction the attacker tries to find new solutions resulting from the exploitation of the environment and the opponent
A network approach to characterize the teammates’ interactions on football: A single match analysis
*e aim of this case study was to apply a set of network metrics inorder to characterize the teammates’ cooperation in a football team. *esemetrics were applied in three levels of analysis: i) micro (individual analysis);ii) meso (players’ contribution for the team); and iii) macro (global interactionof the team). One-single case study match was observed and fromsuch procedure were analysed 131 attacking plays. Results from the macroanalysis showed a moderate heterogeneity between teammates, thus suggestingthe emergence of clusters within the team. *e players with highestconnections with their teammates were the right defender, central defenderfrom the left side, defensive mid+elder, right mid+elder and the forwardplayer. Finally, in the micro analysis was observed that right defender, centraldefender, right mid+elder and the forward can be considered the centroidplayers during attacking plays, thus being the most prominent in theattacking building. In sum, the network metrics allowed to characterize theteammates’ interaction during the attacking plays, providing an importantand di<erent information that can be useful for the future of match analysi
Sistemas inteligentes para el análisis de fútbol: centroide ponderado
Nuevos sistemas inteligentes se han desarrollado recientemente, con el fin de mejorar la calidad de análisis del partido. Estos sistemas basan su análisis en el comportamiento táctico de los equipos, sin embargo, todos los métodos innovadores necesitan algunos cam-bios para aumentar su potencial en las implicaciones prácticas. Por lo tanto, el objetivo principal de este trabajo es proponer una actualización del centroide y métrica del equipo, teniendo en cuenta a todos los jugadores del equipo y también la posición de la bola, además, tiene como objetivo analizar la relación entre los centroides de los equipos oponentes.Un partido de fútbol 11, fue analizado con el fin de aplicar el nuevo algoritmo del centroide; los principales resultados mostraron una fuerte evidencia de la relación positiva entre centroides en el eje x (rs= 0.781) y el eje y (rs= 0.707). Este estudio, confirma trabajos previos que analizaron la relación positiva y fuerte entre equipos centroides. Además, fue posible demostrar la pertinencia de la nueva actualización de métrica táctica y su importancia para el aumento de la información en las aplicaciones prácticas durante el partido.New, intelligent systems have been developed recently to improve the quality of match analysis. These systems analyze the tactical behavior of the teams. However, the existing methods leave room for improvement. Thus, the main goal of this study is to refine the team centroid metric by considering all of the players on the team and the ball position. Furthermore, this study analyzes the relation-ship between the centroids of the two opposing teams. One 11-on-11 soccer match was analyzed to test the new centroid algorithm. The results provided strong evidence of the positive relation between the centroids of the two teams over time in the x-axis (rs= 0.781) and the x-axis (rs= 0.707). This study confirmed the results of previous studies that analyzed the relationship between team centroids. Furthermore, it was possible to prove the effectiveness of the new tactical metric and its relevance for adding information during a match
Improving the robustness of a service robot for continuous indoor monitoring: An incremental approach
To move out of the lab, service robots must reveal a proven robustness so they can be deployed in operational environments.
This means that they should function steadily for long periods of time in real-world areas under uncertainty,
without any human intervention, and exhibiting a mature technology readiness level. In this work, we describe an
incremental methodology for the implementation of an innovative service robot, entirely developed from the outset, to
monitor large indoor areas shared by humans and other obstacles. Focusing especially on the reliability of the fundamental
localization system of the robot in the long term, we discuss all the incremental software and hardware features, design
choices, and adjustments conducted, and show their impact on the performance of the robot in the real world, in three
distinct 24-h long trials, with the ultimate goal of validating the proposed mobile robot solution for indoor monitoring