72 research outputs found
On-orbit Metrology and Calibration Requirements for Space Station Activities Definition Study
The Space Station is the focal point for the commercial development of space. The long term routine operation of the Space Station and the conduct of future commercial activities suggests the need for in-space metrology capabilities analogous when possible to those on-Earth. The ability to perform periodic calibrations and measurements with proper traceability is imperative for the routine operation of the Space Station. An initial review, however, indicated a paucity of data related to metrology and calibration requirements for in-space operations. This condition probably exists because of the highly developmental aspect of space activities to date, their short duration, and nonroutine nature. The on-orbit metrology and calibration needs of the Space Station were examined and assessed. In order to achieve this goal, the following tasks were performed: an up-to-date literature review; identification of on-orbit calibration techniques; identification of sensor calibration requirements; identification of calibration equipment requirements; definition of traceability requirements; preparation of technology development plans; and preparation of the final report. Significant information and major highlights pertaining to each task is presented. In addition, some general (generic) conclusions/observations and recommendations that are pertinent to the overall in-space metrology and calibration activities are presented
Interakcije nekih plijesni i aflatoksinogenog soja Asspergillus flavus NRRL 3251
The objective of this study was to evaluate biotic interaction between some mould species and active producer of aflatoxin B1 Aspergillus flavus NRRL 3251, co-cultured in yeast-extract sucrose (YES) broth. Twenty-five mould strains of Alternaria spp., Cladosporium spp., Mucor spp., A. flavus and A. niger, used as biocompetitive agents, were isolated from outdoor and indoor airborne fungi, scrapings of mouldy household walls, and from stored and post-harvest maize. Aflatoxin B1 was extracted from mould biomasses with chloroform and detected using the multitoxin TLC method. The results confirm antagonistic interaction between all strains tested. With Alternaria spp. and Cladosporium spp., aflatoxin B1 production decreased 100 %, compared to detection in a single culture of A. flavus NRRL 3251 (Cmean=18.7 ”g mL-1). In mixed cultures with Mucor spp., aflatoxin B1 levels dropped to (5.6-9.3) ”g mL-1, and the inhibition was from 50 % to 70 %. Four of five aflatoxin non-producing strains of A. flavus interfered with aflatoxin production in mixed culture, and reduced AFB1 productivity by 100 %. One strain showed a lower efficacy in inhibiting AFB1 production (80 %) with a detectable amount of AFB1 3.7 ”g mL-1 when compared to control. A decrease in toxin production was also observed in dual cultivation with A. niger strains. It resulted in 100 % reduction in three strains), 90 % reduction in one strain (Cmean=1.9 ”g mL-1) and 80 % reduction in one strain (Cmean=3.7 ”g mL-1) inhibition.Cilj rada bio je procijeniti biotske interakcije izmeÄu sojeva razliÄitih vrsta plijesni i kontrolnog soja Aspergillus flavus NRRL 3251, producenta aflatoksina B1 (AFB1). Inhibitorno djelovanje u mijeĆĄanim kulturama na tvorbu AFB1 ispitano je na dvadeset pet sojeva Alternaria, Cladosporium, Mucor i Aspergillus vrsta izoliranih iz zraka, strugotina pljesnivih zidova te uskladiĆĄtenog i prezimljenog kukuruza. Biosinteze su provedene u tekuÄoj hranjivoj podlozi s kvaĆĄÄevim ekstraktom (YESbujon). Ekstrakcije AFB1 iz biomase izvrĆĄene su multitoksinskom metodom tankoslojne kromatografije. Rezultati biotskih interakcija pokazali su antagonistiÄki odnos svih testiranih sojeva. Alternaria i Cladosporium vrste simultano inokulirane sporama A. flavus NRRL 3251 inhibirale su tvorbu AFB1 100 % u odnosu na dokazani toksin u kontrolnoj biosintezi (konc. 18,7 ”g mL-1). U mijeĆĄanim kulturama vrstama roda Mucor dokazane su padajuÄe koncentracije AFB1 (9,3 ”g mL-1, 7,5 ”g mL-1 i 5,6 ”g mL-1), odnosno inhibicija tvorbe toksina 50 % do 70 %. Atoksinogeni sojevi A. flavus inhibirali su tvorbu AFB1 80 % (1 soj, konc. 3,7 ”g mL-1) i 100 % (4 soja). AntagonistiÄko djelovanje prema toksinogenom soju, smanjujuÄi tvorbu AFB1 u rasponu 80 % do 100 % (konc. 1,9 ”g mL-1 i 3,7 ”g mL-1), dokazano je u uzgojnim biosintezama s A. niger
Aflatoxin contamination of maize and groundnut in Burundi: distribution of contamination, identification of causal agents and potential biocontrol genotypes of Aspergillus flavus
Open Access JournalAflatoxin contamination of the staples maize and groundnut is a concern for health and economic impacts across sub-Saharan Africa. The current study (i) determined aflatoxin levels in maize and groundnut collected at harvest in Burundi, (ii) characterized populations of Aspergillus section Flavi associated with the two crops, and (iii) assessed aflatoxin-producing potentials among the recovered fungi. A total of 120 groundnut and 380 maize samples were collected at harvest from eight and 16 provinces, respectively. Most of the groundnut (93%) and maize (87%) contained aflatoxin below the European Union threshold, 4 ÎŒg/kg. Morphological characterization of the recovered Aspergillus section Flavi fungi revealed that the L-morphotype of A. flavus was the predominant species. Aflatoxin production potentials of the L-morphotype isolates were evaluated in maize fermentations. Some isolates produced over 137,000 ÎŒg/kg aflatoxin B 1 . Thus, despite the relatively low aflatoxin levels at harvest, the association of both crops with highly toxigenic fungi poses significant risk of post-harvest aflatoxin contamination and suggests measures to mitigate aflatoxin contamination in Burundi should be developed. Over 55% of the L-morphotype A. flavus did not produce aflatoxins. These atoxigenic L-morphotype fungi were characterized using molecular markers. Several atoxigenic genotypes were detected across the country and could be used as biocontrol agents. The results from the current study hold promise for developing aflatoxin management strategies centered on biocontrol for use in Burundi to reduce aflatoxin contamination throughout the value chain
Intervention trial with calcium montmorillonite clay in a south Texas population exposed to aflatoxin
South Texas currently has the highest incidence of hepatocellular carcinoma (HCC) in the United States, a disease that disproportionately affects Latino populations in the region. Aflatoxin B(1) (AFB(1)) is a potent liver carcinogen that has been shown to be present in a variety of foods in the U.S., including corn and corn products. Importantly, it is a dietary risk factor contributing to a higher incidence of HCC in populations frequently consuming AFB(1)-contaminated diets. In a randomized double-blind placebo controlled trial, we evaluated the effects of a three-month administration of ACCS100 (refined calcium montmorillonite clay) on serum AFB(1)-lysine adduct level and serum biochemistry in 234 healthy men and women residing in Bexar and Medina Counties, Texas. Participants recruited from 2012â2014 received either a Placebo, 1.5 g, or 3 g ACCS100 each day for three months, and no treatment during the 4(th) month. Adverse event rates were similar across treatment groups and no significant differences were observed for serum biochemistry and hematology parameters. Differences in levels of AFB(1)-lysine adduct at 1, 3, and 4 months were compared between Placebo and active treatment groups. Although serum AFB(1)-lysine adduct levels were decreased by month 3 for both treatment groups, the Low dose was the only treatment that was significant (p=0.0005). In conclusion, the observed effect in the Low dose treatment group suggests that the use of ACCS100 may be a viable strategy to reduce dietary AFB(1) bioavailability during aflatoxin outbreaks and potentially in populations chronically exposed to this carcinogen
Biodiversity of Aspergillus species in some important agricultural products
AbstractThe genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non-toxigenic A. oryzae. Studies are needed in order to characterise the aflatoxin biosynthetic genes in the new related taxa A. minisclerotigenes and A. arachidicola
- âŠ