70 research outputs found
Magnetic loop antenna with electronic tuning for frequencies below 30MHz
Tento projekt se zabĂœvĂĄ nĂĄvrhem elektronickĂ©ho ladÄnĂ a automatizovanĂ©ho pĆizpĆŻsobenĂ magnetickĂœch, smyÄkovĂœch antĂ©n, pracujĂcĂch v oblasti krĂĄtkĂœch vln. CelĂĄ prĂĄce je rozdÄlena do tĆĂ ÄĂĄstĂ (ladĂcĂ, pĆizpĆŻsobovacĂ a ĆĂdĂcĂ). LadĂcĂ ÄĂĄst je realizovanĂĄ zmÄnou kapacity pomocĂ kaskĂĄdy kondenzĂĄtorĆŻ a pĆizpĆŻsobovĂĄnĂ je provedeno rĆŻznĂœmi zmÄnami bodĆŻ napĂĄjenĂ. CelĂœ systĂ©m je ĆĂzen mikroprocesorem ATmega16. Dle poĆŸadavkĆŻ obsluĆŸnĂ©ho programu, spĂnĂĄ mikroprocesor pĆĂsluĆĄnĂ© kapacity, ÄĂmĆŸ ladĂ antĂ©nu na potĆebnĂœ kmitoÄet, pracovĂĄvĂĄ informace o vĂœkonovĂ©m pĆizpĆŻsobenĂ a automaticky dolaÄuje antĂ©nu zmÄnou polohy napĂĄjenĂ.This project deals with electronic tuning and automated adjustment of magnetic loop antennas, working in the High Frequencys. The whole work is divided into three parts tuning, adjustment and control). The tuning part is realized by changing the capacity of the array capacitors and adjustment is done by different changes of power points. The whole system is controlled by a microprocessor ATmega16. According to utility switches the microprocessor capacity, which tunes the antenna to the required frequency, processes information about power adjustment and autimatically fine-tuning the antenna by changing the position of charging.
A Markovian event-based framework for stochastic spiking neural networks
In spiking neural networks, the information is conveyed by the spike times,
that depend on the intrinsic dynamics of each neuron, the input they receive
and on the connections between neurons. In this article we study the Markovian
nature of the sequence of spike times in stochastic neural networks, and in
particular the ability to deduce from a spike train the next spike time, and
therefore produce a description of the network activity only based on the spike
times regardless of the membrane potential process.
To study this question in a rigorous manner, we introduce and study an
event-based description of networks of noisy integrate-and-fire neurons, i.e.
that is based on the computation of the spike times. We show that the firing
times of the neurons in the networks constitute a Markov chain, whose
transition probability is related to the probability distribution of the
interspike interval of the neurons in the network. In the cases where the
Markovian model can be developed, the transition probability is explicitly
derived in such classical cases of neural networks as the linear
integrate-and-fire neuron models with excitatory and inhibitory interactions,
for different types of synapses, possibly featuring noisy synaptic integration,
transmission delays and absolute and relative refractory period. This covers
most of the cases that have been investigated in the event-based description of
spiking deterministic neural networks
Progress in Understanding and Treating SCN2A-Mediated Disorders
Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between genotype and phenotype. This insight can help guide therapeutic decisions and raises the possibility that ligands that selectively enhance or diminish channel function may improve symptoms. The well-defined function of sodium channels makes SCN2A an important test case for investigating the neurobiology of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders
Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation
Long-term potentiation (LTP) in the rat hippocampus is the most extensively studied cellular model for learning and memory. Induction of classical LTP involves an NMDA receptor- and calcium-dependent increase in functional synaptic AMPA receptors mediated by enhanced recycling of internalized AMPA receptors back to the postsynaptic membrane. Here we report a novel, physiologically relevant NMDA receptor-independent mechanism that drives increased AMPA receptor recycling and LTP. This pathway requires the metabotropic action of kainate receptors and activation of G-protein, protein kinase C and phospholipase C. Like classical LTP, kainate receptor-dependent LTP recruits recycling endosomes to spines, enhances synaptic recycling of AMPA receptors to increase their surface expression and elicits structural changes in spines, including increased growth and maturation. These data reveal a new and previously unsuspected role for postsynaptic kainate receptors in the induction of functional and structural plasticity in the hippocampus
Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection
Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact
Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection
Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact
Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders
There is a long-standing paradox that N-methyl-D-aspartate receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signaling, leads to the build-up of a neuroprotective âshieldâ, whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntingtonâs disease and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
- âŠ