71 research outputs found
Automated Speckle Interferometry of Known Binaries
Astronomers have been measuring the separations and position angles between
the two components of binary stars since William Herschel began his
observations in 1781. In 1970, Anton Labeyrie pioneered a method, speckle
interferometry, that overcomes the usual resolution limits induced by
atmospheric turbulence by taking hundreds or thousands of short exposures and
reducing them in Fourier space. Our 2022 automation of speckle interferometry
allowed us to use a fully robotic 1.0-meter PlaneWave Instruments telescope,
located at the El Sauce Observatory in the Atacama Desert of Chile, to obtain
observations of many known binaries with established orbits. The long-term
objective of these observations is to establish the precision, accuracy, and
limitations of this telescope's automated speckle interferometry measurements.
This paper provides an early overview of the Known Binaries Project and provide
example results on a small-separation (0.27") binary, WDS 12274-2843 B 228
Resonant nonlinear magneto-optical effects in atoms
In this article, we review the history, current status, physical mechanisms,
experimental methods, and applications of nonlinear magneto-optical effects in
atomic vapors. We begin by describing the pioneering work of Macaluso and
Corbino over a century ago on linear magneto-optical effects (in which the
properties of the medium do not depend on the light power) in the vicinity of
atomic resonances, and contrast these effects with various nonlinear
magneto-optical phenomena that have been studied both theoretically and
experimentally since the late 1960s. In recent years, the field of nonlinear
magneto-optics has experienced a revival of interest that has led to a number
of developments, including the observation of ultra-narrow (1-Hz)
magneto-optical resonances, applications in sensitive magnetometry, nonlinear
magneto-optical tomography, and the possibility of a search for parity- and
time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002,
Figure added, typos corrected, text edited for clarit
Individual Facial Coloration in Male Eulemur fulvus rufus: A Condition-dependent Ornament?
Researchers studying individual variation in conspicuous skin coloration in primates have suggested that color indicates male quality. Although primate fur color can also be flamboyant, the potential condition dependence and thus signaling function of fur remains poorly studied. We studied sources of variation in sexually dichromatic facial hair coloration in red-fronted lemurs (Eulemur fulvus rufus). We collected data on 13 adult males in Kirindy Forest, Madagascar, during two study periods in 2006 and 2007, to determine whether variation in facial hair coloration correlates with male age, rank, androgen status, and reproductive success. We quantified facial hair coloration via standardized digital photographs of each male, assessed androgen status using fecal hormone measurements, and obtained data on reproductive success through genetic paternity analyses. Male facial hair coloration showed high individual variation, and baseline coloration was related to individual androgen status but not to any other parameter tested. Color did not reflect rapid androgen changes during the mating season. However, pronounced long-term changes in androgen levels between years were accompanied by changes in facial hair coloration. Our data suggest that facial hair coloration in red-fronted lemur males is under proximate control of androgens and may provide some information about male quality, but it does not correlate with dominance rank or male reproductive success
Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
This document presents the initial scientific case for upgrading the
Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab)
to 22 GeV. It is the result of a community effort, incorporating insights from
a series of workshops conducted between March 2022 and April 2023. With a track
record of over 25 years in delivering the world's most intense and precise
multi-GeV electron beams, CEBAF's potential for a higher energy upgrade
presents a unique opportunity for an innovative nuclear physics program, which
seamlessly integrates a rich historical background with a promising future. The
proposed physics program encompass a diverse range of investigations centered
around the nonperturbative dynamics inherent in hadron structure and the
exploration of strongly interacting systems. It builds upon the exceptional
capabilities of CEBAF in high-luminosity operations, the availability of
existing or planned Hall equipment, and recent advancements in accelerator
technology. The proposed program cover various scientific topics, including
Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse
Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent
Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme
Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic
highlights the key measurements achievable at a 22 GeV CEBAF accelerator.
Furthermore, this document outlines the significant physics outcomes and unique
aspects of these programs that distinguish them from other existing or planned
facilities. In summary, this document provides an exciting rationale for the
energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific
potential that lies within reach, and the remarkable opportunities it offers
for advancing our understanding of hadron physics and related fundamental
phenomena.Comment: Updates to the list of authors; Preprint number changed from theory
to experiment; Updates to sections 4 and 6, including additional figure
- …