5 research outputs found

    Ongoing changes in migration phenology and winter residency at Bracken Bat Cave

    Get PDF
    Bats play an important role in agroecology and are effective bioindicators of environmental conditions, but little is known about their fundamental migration ecology, much less how these systems are responding to global change. Some of the world's largest bat populations occur during the summer in the south-central United States, when millions of pregnant females migrate from lower latitudes to give birth in communal maternity colonies. Despite a relatively large volume of research into these colonies, many fundamental questions regarding their abundance—including their intra- and interseasonal variability—remain unanswered, and even estimating the size of individual populations has been a long-running challenge. Overall, monitoring these bat populations at high temporal resolution (e.g., nightly) and across long time spans (e.g., decades) has been impossible. Here, we show 22 continuous years of nightly population counts at Bracken Cave, a large bat colony in south-central Texas, enabling the first climate-scale phenological analysis. Using quantitative radar monitoring, we found that spring migration and the summer reproductive cycle have advanced by approximately 2 weeks over the study period. Furthermore, we quantify the ongoing growth of a newly—established overwintering population that indicates a system-wide response to changing environmental conditions. Our observations reveal behavioral plasticity in bats’ ability to adapt to changing resource availability, and provide the first long-term quantification of their response to a changing climate. As aerial insectivores, these changes in bat phenology and propensity for overwintering indicate probable shifts in prey availability, with clear implications for pest management across wider regional agrisystems

    Early and empirical high-dose cryoprecipitate for hemorrhage after traumatic injury: The CRYOSTAT-2 randomized clinical trial

    Get PDF
    Critical bleeding is associated with a high mortality rate in patients with trauma. Hemorrhage is exacerbated by a complex derangement of coagulation, including an acute fibrinogen deficiency. Management is fibrinogen replacement with cryoprecipitate transfusions or fibrinogen concentrate, usually administered relatively late during hemorrhage. To assess whether survival could be improved by administering an early and empirical high dose of cryoprecipitate to all patients with trauma and bleeding that required activation of a major hemorrhage protocol. CRYOSTAT-2 was an interventional, randomized, open-label, parallel-group controlled, international, multicenter study. Patients were enrolled at 26 UK and US major trauma centers from August 2017 to November 2021. Eligible patients were injured adults requiring activation of the hospital's major hemorrhage protocol with evidence of active hemorrhage, systolic blood pressure less than 90 mm Hg at any time, and receiving at least 1 U of a blood component transfusion. Patients were randomly assigned (in a 1:1 ratio) to receive standard care, which was the local major hemorrhage protocol (reviewed for guideline adherence), or cryoprecipitate, in which 3 pools of cryoprecipitate (6-g fibrinogen equivalent) were to be administered in addition to standard care within 90 minutes of randomization and 3 hours of injury. The primary outcome was all-cause mortality at 28 days in the intention-to-treat population. Among 1604 eligible patients, 799 were randomized to the cryoprecipitate group and 805 to the standard care group. Missing primary outcome data occurred in 73 patients (principally due to withdrawal of consent) and 1531 (95%) were included in the primary analysis population. The median (IQR) age of participants was 39 (26-55) years, 1251 (79%) were men, median (IQR) Injury Severity Score was 29 (18-43), 36% had penetrating injury, and 33% had systolic blood pressure less than 90 mm Hg at hospital arrival. All-cause 28-day mortality in the intention-to-treat population was 26.1% in the standard care group vs 25.3% in the cryoprecipitate group (odds ratio, 0.96 [95% CI, 0.75-1.23]; P = .74). There was no difference in safety outcomes or incidence of thrombotic events in the standard care vs cryoprecipitate group (12.9% vs 12.7%). Among patients with trauma and bleeding who required activation of a major hemorrhage protocol, the addition of early and empirical high-dose cryoprecipitate to standard care did not improve all cause 28-day mortality. ClinicalTrials.gov Identifier: NCT04704869; ISRCTN Identifier: ISRCTN14998314
    corecore