2,339 research outputs found
Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations
We investigate the behavior of the slip length in Newtonian liquids subject
to planar shear bounded by substrates with mixed boundary conditions. The upper
wall, consisting of a homogenous surface of finite or vanishing slip, moves at
a constant speed parallel to a lower stationary wall, whose surface is
patterned with an array of stripes representing alternating regions of no-shear
and finite or no-slip. Velocity fields and effective slip lengths are computed
both from molecular dynamics (MD) simulations and solution of the Stokes
equation for flow configurations either parallel or perpendicular to the
stripes. Excellent agreement between the hydrodynamic and MD results is
obtained when the normalized width of the slip regions, , where is the (fluid) molecular diameter characterizing the
Lennard-Jones interaction. In this regime, the effective slip length increases
monotonically with to a saturation value. For and transverse flow configurations, the non-uniform interaction
potential at the lower wall constitutes a rough surface whose molecular scale
corrugations strongly reduce the effective slip length below the hydrodynamic
results. The translational symmetry for longitudinal flow eliminates the
influence of molecular scale roughness; however, the reduced molecular ordering
above the wetting regions of finite slip for small values of
increases the value of the effective slip length far above the hydrodynamic
predictions. The strong inverse correlation between the effective slip length
and the liquid structure factor representative of the first fluid layer near
the patterned wall illustrates the influence of molecular ordering effects on
slip in non-inertial flows.Comment: 12 pages, 10 figures Web reference added for animations:
http://www.egr.msu.edu/~priezjev/bubble/bubble.htm
Stone-Wales--type transformations in carbon nanostructures driven by electron irradiation
Observations of topological defects associated with Stone-Wales-type
transformations (i.e., bond rotations) in high resolution transmission electron
microscopy (HRTEM) images of carbon nanostructures are at odds with the
equilibrium thermodynamics of these systems. Here, by combining
aberration-corrected HRTEM experiments and atomistic simulations, we show that
such defects can be formed by single electron impacts, and remarkably, at
electron energies below the threshold for atomic displacements. We further
study the mechanisms of irradiation-driven bond rotations, and explain why
electron irradiation at moderate electron energies (\sim100 keV) tends to
amorphize rather than perforate graphene. We also show via simulations that
Stone-Wales defects can appear in curved graphitic structures due to incomplete
recombination of irradiation-induced Frenkel defects, similar to formation of
Wigner-type defects in silicon
DNA array analysis of Candida albicans gene expression in response to adherence to polystyrene.
Candidiasis is often initiated by the colonization of inert surfaces. In order to elucidate the mechanisms involved in this adherence process, DNA macroarrays were used to analyze the transcriptome of Candida albicans, the main causative agent of this mycoses, in a simple adherence model using germ tubes produced in polystyrene Petri dishes. Non-adherent germ tubes produced on glass surface were used as a control. Analysis of gene expression displayed 77 genes identified as statistically overexpressed in adherent germ tubes. Among these genes, some encoded enzymes participating in metabolism of lipids (such as LIP6), of proteins (such as SAP1) or of carbohydrates (like PGI1, PMI40 and PSA1. Some of these genes have already been reported as playing a role in pathogenesis of C. albicans. However, functions were unknown for a large part (45.5%) of the overexpressed genes which will be analyzed further in order to define their relationship with adherence
Report of the laboratory confirmation of cases from the CDTUB Pobé, Benin
In 2009, 420 diagnostic samples (corresponding to 301 patients suspected of M. ulcerans infection) from the Centre de Dépistage et de Traitement de l’Ulcère de Buruli of Benin were subjected to IS2404 PCR at the Centre Hospitalier Universitaire of Angers. 180 samples (corresponding to 141 patients) were confirmed positive to M. ulcerans infection by PCR
Disruption of Candida albicans IFF4 gene involves modifications of the cell electrical surface properties.
During the past two decades, the prevalence of candidiasis has increased markedly and Candida albicans has now become one of the most important causes of nosocomial infections, especially after colonization of inert surfaces such as catheters or prostheses. In a previous report, we demonstrated the overexpression of 35 unidentified genes in response to adherence of C. albicans germ tubes to plastic. Therefore, a bioinformatic analysis was performed searching for genes encoding surface proteins potentially involved in adherence. Nineteen genes were thus selected, and one of them, CaIFF4, was further investigated. The deduced protein of this CaIFF4 gene revealed a glycosylphosphatidylinositol (GPI)-anchored site as well as the presence of a N-terminal signal peptide. Disruption of both alleles of CaIFF4 gene from C. albicans parent strain BWP17 was performed by PCR method. Then investigations of properties of null mutant for CaIFF4 gene showed a decrease of adherence of germ tubes to plastic in comparison to the parent strain BWP17. Besides, electrophoretic mobilities of germ tubes of CaIFF4 null mutant and of parental strain BWP17 were measured. Data were then analysed with soft particles analysis theory. Results point out a less important electrophoretic mobility of germ tubes of CaIFF4 null mutant in comparison to germ tubes of BWP17 parental strain
Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1.
The pathogenic fungus, Candida albicans contains homologues of the transcriptional repressors ScTup1, ScMig1 and ScNrg1 found in budding yeast. In Saccharomyces cerevisiae, ScMig1 targets the ScTup1/ScSsn6 complex to the promoters of glucose repressed genes to repress their transcription. ScNrg1 is thought to act in a similar manner at other promoters. We have examined the roles of their homologues in C. albicans by transcript profiling with an array containing 2002 genes, representing about one quarter of the predicted number of open reading frames (ORFs) in C. albicans. The data revealed that CaNrg1 and CaTup1 regulate a different set of C. albicans genes from CaMig1 and CaTup1. This is consistent with the idea that CaMig1 and CaNrg1 target the CaTup1 repressor to specific subsets of C. albicans genes. However, CaMig1 and CaNrg1 repress other C. albicans genes in a CaTup1-independent fashion. The targets of CaMig1 and CaNrg1 repression, and phenotypic analyses of nrg1/nrg1 and mig1/mig1 mutants, indicate that these factors play differential roles in the regulation of metabolism, cellular morphogenesis and stress responses. Hence, the data provide important information both about the modes of action of these transcriptional regulators and their cellular roles. The transcript profiling data are available at http://www.pasteur.fr/recherche/unites/RIF/transcriptdata/
A step-wise approach for establishing a multidisciplinary team for the management of tuberous sclerosis complex: a Delphi consensus report.
BACKGROUND: Tuberous sclerosis complex (TSC) is a rare autosomal dominant genetic disorder associated with mutations in TSC1 and TSC2 genes, upregulation of mammalian target of rapamycin signaling, and subsequent tumor formation in various organs. Due to the many manifestations of TSC and their potential complications, management requires the expertise of multiple medical disciplines. A multidisciplinary care approach is recommended by consensus guidelines. Use of multidisciplinary teams (MDTs) has been shown to be beneficial in treating other complex diseases, such as cancer. In a lifelong disease such as TSC, an MDT may facilitate the transition from pediatric to adult care. However, little guidance exists in the literature regarding how to organize an MDT in TSC. METHODS: To discuss the best approach to assembling an MDT, this project was initiated in October 2017 with a meeting of 12 physicians from various specialties and various countries. Following this first meeting, the experts generated statements on the most important aspects to implement in establishing an MDT for TSC by 3 rounds of selection using a Delphi process via electronic correspondence. Finally, TSC patient advocates reviewed the findings and provided additional insights from a patient perspective. RESULTS: A 3-step roadmap was recommended, starting with identifying a single individual to begin organizing care (Step 1), then establishing a small core team (Step 2), and finally, establishing a larger multi-disciplinary team (Step 3). Because of the multisystemic nature of TSC, the MDT should include specialists such as a neurologist, a neurosurgeon, a nephrologist, a urologist, a pulmonologist, an ophthalmologist, a cardiologist, a dermatologist, a geneticist, and a psychiatrist/psychologist. The MDT should recommend a care plan for each patient based on the individual's needs and in consultation with him/her or his/her family. Some of the most important aspects of an MDT that were agreed upon included identifying a case manager to help coordinate care, providing access to health care professionals of varying specialties, and including a lead physician who takes medical responsibility for patients' overall care. CONCLUSIONS: The results of our consensus provide guidance to support the initiation of an MDT in TSC
Equilibrium Simulation of the Slip Coefficient in Nanoscale Pores
Accurate prediction of interfacial slip in nanoscale channels is required by
many microfluidic applications. Existing hydrodynamic solutions based on
Maxwellian boundary conditions include an empirical parameter that depends on
material properties and pore dimensions. This paper presents a derivation of a
new expression for the slip coefficient that is not based on the assumptions
concerning the details of solid-fluid collisions and whose parameters are
obtainable from \textit{equilibrium} simulation. The results for the slip
coefficient and flow rates are in good agreement with non-equilibrium molecular
dynamics simulation.Comment: 11 pages, 4 figures, submitted to Phys Rev Let
Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels
In this contribution we review recent efforts on investigations of the effect
of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We
demonstrate the applicability of the method to treat fundamental questions in
microfluidics by investigating fluid flow in hydrophobic and rough
microchannels as well as over surfaces covered by nano- or microscale gas
bubbles.Comment: 11 pages, 6 figure
- …
