155 research outputs found

    Accurate free and forced rotational motions of rigid Venus

    Full text link
    % context :The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting since it can be compared with that of the Earth for which such a modelling has already been achieved at the milliarcsecond level % aims: We want to complete a previous study (Cottereau and Souchay, 2009), by determining at the milliarcsecond level the polhody, i.e. the torque-free motion of the axis of angular momentum of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. results :In a first part we have computed the polhody, i.e. the respective free rotational motion of the axis of angular momentum of Venus with respect to a body-fixed frame. We have shown that this motion is highly elliptical, with a very long period of 525 cy to be compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we have computed precisely the Oppolzer terms which allow to represent the motion in space of the third Venus figure axis with respect to Venus angular momentum axis, under the influence of the solar gravitational torque. We have determined the corresponding tables of coefficients of nutation of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We have shown that the coefficients of nutation for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration which revealed the indirect planetary effects.Comment: 14 pages, 11 figures, accepted for publication in section 11. Celestial mechanics and astrometry of Astronomy and Astrophysics (27/02/2010

    About the various contributions in Venus rotation rate and LOD

    Full text link
    % context heading (optional) {Thanks to the Venus Express Mission, new data on the properties of Venus could be obtained in particular concerning its rotation.} % aims heading (mandatory) {In view of these upcoming results, the purpose of this paper is to determine and compare the major physical processes influencing the rotation of Venus, and more particularly the angular rotation rate.} % methods heading (mandatory) {Applying models already used for the Earth, the effect of the triaxiality of a rigid Venus on its period of rotation are computed. Then the variations of Venus rotation caused by the elasticity, the atmosphere and the core of the planet are evaluated.} % results heading (mandatory) {Although the largest irregularities of the rotation rate of the Earth at short time scales are caused by its atmosphere and elastic deformations, we show that the Venus ones are dominated by the tidal torque exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation, these effects have a large amplitude of 2 minutes of time (mn). These variations of the rotation rate are larger than the one induced by atmospheric wind variations that can reach 25-50 seconds of time (s), depending on the simulation used. The variations due to the core effects which vary with its size between 3 and 20s are smaller. Compared to these effects, the influence of the elastic deformation cause by the zonal tidal potential is negligible.} % conclusions heading (optional), leave it empty if necessary {As the variations of the rotation of Venus reported here are of the order 3mn peak to peak, they should influence past, present and future observations providing further constraints on the planet internal structure and atmosphere.}Comment: 12 pages, 10 figures, Accepted in A&

    Personalised therapy in follicular lymphoma - is the dial turning?

    Get PDF
    Follicular lymphoma is the most common indolent lymphoma accounting for approximately 20%–25% of all new non-Hodgkin lymphoma diagnoses in western countries. Whilst outcomes are mostly favorable, the spectrum of clinical phenotypes includes high-risk groups with significantly inferior outcomes. This review discusses recent updates in risk stratification and treatment approaches from upfront treatment for limited and advanced stage follicular lymphoma to the growing options for relapsed, refractory disease with perspectives on how to approach this from a personalized lens. Notable gaps remain on how one can precisely and prospectively select optimal treatment for patients based on varying risks, with an anticipation that an increased understanding of the biology of these different phenotypes and increasing refinement of imaging- and biomarker-based tools will, in time, allow these gaps to be closed

    Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature

    Get PDF
    Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications)

    Charge-radius change and nuclear moments in the heavy tin isotopes from laser spectroscopy: Charge radius of 132^{132}Sn

    Get PDF
    NESTER ACCLaser spectroscopy measurements have been carried out on the neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s25p25s^25p^2 3P05s25p6s^3P_0 \rightarrow 5s^25_p6s 3P1^3P_1 optical transition, hyperfine spectra of 126132^{126-132}Sn and 125,127,129131Snm^{125,127,129-131}Sn^m were recorded for the first time. The nuclear moments and the mean square charge radius variation (δ)wereextracted.Fromthequadrupolemomentvalues,thesenucleiappeartobespherical.Themagneticmomentsmeasuredarethuscomparedwiththosepredictedbysphericalbasisapproaches.Fromthemeasured\delta) were extracted. From the quadrupole moment values, these nuclei appear to be spherical. The magnetic moments measured are thus compared with those predicted by spherical basis approaches. From the measured \delta, the absolute charge radii of these isotopes were deduced in particular that of the doubly magic 132^{132}Sn nucleus. The comparison of the results with several mean-field-type calculations have shown that dynamical effects play an important role in the tin isotopes

    Release properties of UCx_x and molten U targets

    Get PDF
    The release properties of UCx_x and molten U thick targets associated with a Nier- Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe

    Integrative analysis of a phase 2 trial combining lenalidomide with CHOP in angioimmunoblastic T-cell lymphoma.

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AITL) is a frequent T-cell lymphoma in the elderly population that has a poor prognosis when treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) therapy. Lenalidomide, which has been safely combined with CHOP to treat B-cell lymphoma, has shown efficacy as a single agent in AITL treatment. We performed a multicentric phase 2 trial combining 25 mg lenalidomide daily for 14 days per cycle with 8 cycles of CHOP21 in previously untreated AITL patients aged 60 to 80 years. The primary objective was the complete metabolic response (CMR) rate at the end of treatment. Seventy-eight of the 80 patients enrolled were included in the efficacy and safety analysis. CMR was achieved in 32 (41%; 95% confidence interval [CI], 30%-52.7%) patients, which was below the prespecified CMR rate of 55% defined as success in the study. The 2-year progression-free survival (PFS) was 42.1% (95% CI, 30.9%-52.8%), and the 2-year overall survival was 59.2% (95% CI, 47.3%-69.3%). The most common toxicities were hematologic and led to treatment discontinuation in 15% of patients. This large prospective and uniform series of AITL treatment data was used to perform an integrative analysis of clinical, pathologic, biologic, and molecular data. TET2, RHOA, DNMT3A, and IDH2 mutations were present in 78%, 54%, 32%, and 22% of patients, respectively. IDH2 mutations were associated with distinct pathologic and clinical features and DNMT3A was associated with shorter PFS. In conclusion, the combination of lenalidomide and CHOP did not improve the CMR in AITL patients. This trial clarified the clinical impact of recurrent mutations in AITL. This trial was registered at www.clincialtrials.gov as #NCT01553786

    Predictive value of PET response combined with baseline metabolic tumor volume in peripheral T-cell lymphoma patients

    Full text link
    Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of aggressive non-Hodgkin lymphomas with poor outcomes on current therapy. We investigated whether response assessed with PET/CT combined with baseline total metabolic tumor volume (TMTV) could detect early relapse or refractory disease. Methods: From 7 European centers, 140 patients with nodal PTCL who underwent baseline PET/CT were selected. Forty-three had interim PET (iPET) performed after 2 cycles (iPET2), 95 had iPET performed after 3 or 4 cycles (iPET3/4), and 96 had end-of-treatment PET (eotPET). Baseline TMTV was computed with a 41% SUVmax threshold, and PET response was reported using the Deauville 5-point scale. Results: With a median of 43 mo of follow-up, the 2-y progression-free survival (PFS) and overall survival (OS) were 51% and 67%, respectively. iPET2-positive patients (Deauville score ≥ 4) had a significantly worse outcome than iPET2-negative patients (P 230 cm3 and iPET3/4-negative [59%/84%]; TMTV ≤ 230 cm3 and iPET3/4-positive [42%/50%]; TMTV > 230 cm3 and iPET3/4-positive [0%/18%]). Conclusion: iPET response is predictive of outcome and allows early detection of high-risk PTCL patients. Combining iPET with TMTV improves risk stratification in individual patients

    First- and second-order contributions to depth perception in anti-correlated random dot stereograms.

    Get PDF
    The binocular energy model of neural responses predicts that depth from binocular disparity might be perceived in the reversed direction when the contrast of dots presented to one eye is reversed. While reversed-depth has been found using anti-correlated random-dot stereograms (ACRDS) the findings are inconsistent across studies. The mixed findings may be accounted for by the presence of a gap between the target and surround, or as a result of overlap of dots around the vertical edges of the stimuli. To test this, we assessed whether (1) the gap size (0, 19.2 or 38.4 arc min) (2) the correlation of dots or (3) the border orientation (circular target, or horizontal or vertical edge) affected the perception of depth. Reversed-depth from ACRDS (circular no-gap condition) was seen by a minority of participants, but this effect reduced as the gap size increased. Depth was mostly perceived in the correct direction for ACRDS edge stimuli, with the effect increasing with the gap size. The inconsistency across conditions can be accounted for by the relative reliability of first- and second-order depth detection mechanisms, and the coarse spatial resolution of the latter
    corecore