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; . ; . growth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations
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Communicated by Maria Rita Passos-Bueno have been reported in isolated cases or small series and the global genotypic spectrum of these
mutations has never been delineated. In this study, we review the 57 previously described GPC3
mutations and significantly expand this mutational spectrum with the description of 29 novel
mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct
GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to
complex genomic rearrangements and dispersed throughout the entire coding region of GPC3.
The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations)
predicted to result in a loss-of-function. Missense mutations are rare and the two which were
functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface
addressing respectively. This report by describing for the first time the wide mutational spectrum
of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally
by high-throughput sequencing technologies and also reinforces the need for functional validation
of non-truncating mutations (missense, in frame mutations, duplications).
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1 | INTRODUCTION

Simpson-Golabi-Behmel syndrome (SGBS) (MIM# 312870) is an
X-linked disorder first reported by Simpson, Landey, New, and
German (1975) and subsequently described by Golabi & Rosen (1984)
and Behmel, Plochl, and Rosenkranz (1984). Clinically SGBS is char-
acterized by pre- and postnatal overgrowth, macrocephaly, dysmor-
phic facial features including coarse facies, extremities abnormalities,
supernumerary nipples, organomegaly, cardiac, skeletal, gastrointesti-
nal, and genitourinary malformations (Cottereau et al., 2013; Golabi,
Leung, & Lopez, 2011). An increased risk of developing embryonal
tumors, especially Wilms and liver tumors, is also associated with this
syndrome and, in some cases, mild to moderate intellectual disability
may be observed (Li et al., 2001; Neri, Gurrieri, Zanni, & Lin, 1998). This
disorder is caused by loss-of-functional glypican-3 gene, GPC3 (MIM#
300037). This gene which maps to Xq26.2, contains eight exons and
has a full-length transcript of 2.568 kb (NM_004484), which codes for
GPC3, a 70 kDa core protein of 580 amino acids. GPC3 is a mem-
ber of the glypican family which includes six known mammalian hep-
aran sulfate proteoglycans (HSPGs) that are bound to the exocyto-
plasmic surface of the plasma membrane through a covalent glyco-
sylphosphatidylinositol (GPI) linkage. All glypicans share a character-
istic structure with a conserved pattern of 14 cysteine residues and
an heparan sulfate (HS) glycan chain in the C-terminal region close to
the cell membrane. They regulate the signaling of WNTs, Hedgehogs,
fibroblast growth factors, and bone morphogenetic proteins (Filmus,
2001; Filmus, Capurro, & Rast, 2008; Song & Filmus, 2002). GPC3,
for its part, negatively regulates cell proliferation by inhibiting Hedge-
hog (Capurro et al., 2008) and by modulating WNT signaling pathways
(Filmus & Capurro, 2013). In 2011, GPC4 (MIM# 300138), a second
gene coding for another member of the glypican family, was also sug-
gested to be associated with SGBS. However, only one duplication of
this gene has been reported in a family with SGBS by Golabi and Rosen
(Waterson, Stockley, Segal, & Golabi, 2010). This duplication encom-
passes the whole GPC4 gene with uncharacterized breakpoints as it
was identified by multiplex ligation-dependent probe hybridization
(MLPA). Moreover, no point mutations could be identified so far, ques-
tioning the exact role of this gene in the pathogenesis of SGBS (Cot-
tereau et al., 2013). Finally, GPC4 deficient mice do not exhibit features
suggestive of SGBS (The Jackson Laboratory, https:/www.jax.org).
Up to now, GPC3 remains the principal monogenic contributor to
SGBS.

From a clinical point of view, the SGBS has been well character-
ized. Indeed, the clinical features in a cohort of 42 patients with a
molecularly confirmed diagnosis of SGBS were reviewed by our team
in 2013, and compared with those of the literature in order to define
specific clinical criteria for GPC3 molecular testing. Nevertheless, the
global genotypic spectrum of GPC3 mutations has never been delin-
eated even if isolated cases or small series of GPC3 mutations were
published. In this study, we review the 57 previously described GPC3
mutations identified in 71 unrelated families. We significantly expand
the mutational spectrum of GPC3 with the description of 38 additional
GPC3 mutations, from which 29 were novel, in our patient cohort of 49
unrelated families.

WILEY
2 | MUTATIONAL SPECTRUM

Table 1 details GPC3 mutations published between March 1996
and December 2017 in the international peer-reviewed litera-
ture (PubMed database) and The Human Gene Mutation Database
(HGMD professional 2016.4) following HGVS nomenclature guide-
lines (www.HGVS.org) and the reference sequence GenBank entry
NM_004484.3. We collected 57 distinct GPC3 mutations detected in
71 unrelated families (Agatep et al., 2014; Das Bhowmik & Dalal,
2015; Day & Fryer, 2005; DiMaio, Yang, Mahoney, McGrath, & Li,
2017; Ganesamoorthy et al., 2013; Garavelli et al., 2012; Gertsch, Kir-
mani, Ackerman, & Babovic-Vuksanovic, 2010; Gurrieri et al., 2011;
Halayem et al., 2016; Hughes-Benzie et al., 1996; Kehrer et al., 2016;
Kosaki et al., 2014; Li et al.,, 2001; Lindsay et al., 1997; Magini et al.,
2016; Mariani et al., 2003; Mateos et al., 2013; Mujezinovic et al.,
2016; Ochiai et al., 2013; Okamoto, Yagi, Imura, & Wada, 1999;
Pilia et al., 1996; Rodriguez-Criado et al., 2005; Romanelli et al.,
2007; Sakazume et al., 2007; Schmidt, Hollstein, Kaiser, & Gillessen-
Kaesbach, 2017; Shimojima et al., 2016; Spencer, Fieggen, Vorster,
& Beighton, 2016; Stgve et al., 2017; Thomas et al., 2012; Vaisfeld,
Pomponi, Pietrobono, Tabolacci, & Neri, 2017; Veugelers et al., 1998,
2000; Villarreal et al., 2013; Weichert et al., 2011; Xuan, Hughes-
Benzie, & MacKenzie, 1999; Yano et al., 2011; Young, Wishnow, &
Nigro, 2006). In this study, we also report 38 GPC3 mutations in 63
additional male patients from 49 unrelated families (Cf. Table 2 and
Supp. Table S1). These mutations were submitted to LOVD database
(https://databases.lovd.nl/shared/genes/GPC3). The carrier status of
the proband's mother has been ascertained for 33 out of the 49 (67%)
unrelated probands. Twenty seven of these mutations were inherited
from the mother (82%) and only six mutations occurred de novo (18%)
as indicated in Supp. Table S1. Twenty nine of these mutations are
reported for the first time (Cf. Table 2).

Overall, including our data and those of the literature, a total of
86 distinct mutations were found in 120 unrelated patients. In silico
predictions show that the majority of these mutations (49 out of 86)
lead to the occurrence of a premature stop codon. Although all types
of mutation were found, the most prevalent type was large deletions
(34.9%) followed by frameshift mutations leading to a stop prema-
ture codon (24.4%), nonsense mutations (16.3%), missense mutations
(8.1%), large duplications (8.1%), splice site mutations (4.7%), translo-
cations (2.3%), and one in frame mutation (1.2%) (Cf. Figure 1). Most
mutations are unique: 86% of mutations (74 out of 86) have been found
only in single families, 9.3% (eight out of 86) between 2 and 5 families

and 4.6% (four out of 86) have been found in more than six families.

2.1 | Point mutations

Forty-seven distinct point mutations including one base substitutions
and small insertions/deletions (54.6%) were reported in 61 out of
the 120 unrelated probands. A schematic view of GPC3 gene and
the distribution of these point mutations are presented in Figure 2.
Mutations were scattered along the entire coding sequence of GPC3
(Figure 2). The distribution of point mutations was not uniform

although they were found in every exon. Nearly half of the pathogenic
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FIGURE 1 Pie chart summarizing the distribution of the 86 GPC3
mutations

point mutations were found in exon 3 (22 out of 47) (Supp. Figure S1A).
However, when the number of mutations was corrected to the num-
ber of bases in each exon, there was no overrepresentation of muta-
tions in this exon compared to the others, suggesting that exon 3 was
not a hot-spot of mutation but that it was affected proportionally to
its length (Supp. Figure S1B). Exon 2 showed the highest relative rate
of mutations per base, whereas exon 7 appeared the less vulnerable to
point mutations. Only 8.5% (4/47) of these point mutations were recur-
rent (Cf. Figure 2). The most frequent mutations were two nonsense

mutations, c. 256C > T, p.(Arg86*) and c.1159C > T, p.(Arg387%)
detected in seven and six unrelated families respectively. One missense
mutation c.1666G > A, p.(Gly556Arg) was also detected in three unre-
lated families and one nonsense mutation, c.595C > T, p.(Arg199*) in
two unrelated families.

2.1.1 | Missense mutations

The seven missense mutations, among which six were detected
in our cohort, were interpreted in silico with Alamut v2.8.0 soft-
ware (Interactive Biosoftware, Rouen, France; https://www.interacti
vebiosoftware.com). Polyphen2, SIFT, and Mutation Taster prediction
programs were used to assess the predicted pathogenicity of each
variation (Cf. Supp. Table S2). All these mutations were predicted
to be “disease causing” or “probably damaging” by Mutation Taster
and Polyphen-2, respectively, whereas only one of these mutations,
c.886T > A, p.(Trp296Arg) was classified as deleterious by SIFT anal-
ysis. Functional studies were performed for two missense mutations,
c.886T > A, p.(Trp296Arg) and c.1666G > A, p.(Gly556Arg) (Shi & Fil-
mus, 2009; Veugelers et al., 2000). These mutations both altered a
conserved amino acid found in all glypicans and resulted in a loss-of-
function. For the c.886T > A, p.(Trp296Arg) mutation, functional stud-
ies showed that the mutant protein was poorly processed and failed
to increase the cell surface expression of HS (Veugelers et al., 2000).

Frameshift indels

A
o Nonsense
m  |nframe indel
o«
A p.P27Lfs*57 4 p.C65S5fs*15 A p.S136Rfs*27 o p.R199* (x2) 1 p.R358Ffs*16 MIS'SEH?E
A p.P31Rfs*54 4 p.Y81Lfs*36 4 p.V177Afs*6 o p.Q231* 4 p.S359Yfs*6 *  Splice site
A p.LASRfs*26 4 p.G69Afs*48 A p.C197* o p.R254* A Dp.F367Yfs*2
o p.C65* A4 p.L205* 0 p.Y333* o p.R387* (x6)
o p-R86* (x7) A p.K2215fs*13 o p.K340*
 D.G69ID 4 p.V225Dfs*9 " p.W260* .
o p.Q426
s p.G253Afs*17  © p.L154P "
A p.G253Afs*16  ® p.Y295C o P phogl 4 p.L5655fs*63
s p.L256Pfs*¥13 e p.W296R : '”'—Qm o p.G556R (x3)
A D.Y264* *RQAZIH o5k e p.GSSEV
4 p.M282Ifs*12
o p.Q91*
o p.E116*
Aa 1 59 113 345 389 431 472 525
NH2 | S5 | N terminus (Q25-R358) \ C terminus (5359-H559) |Gpi| coon

TEL 5 Ex1 Ex2 Ex3 Ex 4 Ex5 Ex 6 Ex7 Ex8 3’ CEN

Nt 1 176 338

* €.175+1G>A
* €.175+2T>C

* €.337+1G>A

1033 1167 1293 1414 1574

* €.1292+1G>T

FIGURE 2 Distribution of GPC3 previously described and novel point mutations. Genomic structure of GPC3 gene including 8 exons (black
boxes) and introns (black horizontal lines) is represented. cDNA numbering below exons is according to NM_004484.3 and uses +1 as the A of
the ATG translation initiation codon in the reference sequence, with the initiation codon as codon 1. GPC3 protein structure is represented above
GPC3 genomic structure. N-terminal signal peptide (SS = Signal Sequence for secretion; residues 1-24); N terminus (residues 25-358), C-terminus
(residues 359-559) and C terminal GPI anchor addition signal (GPI: glycosylphosphatidylinositol; residue 560-580) are represented. Amino acid
numbers are indicated above GPC3 protein structure. Mutations above GPC3 protein represent exonic mutations and are displayed as changes at
protein level (p). Mutations below GPC3 gene represent intronic mutations affecting the splice sites and are displayed as changes at DNA level (c).
Underlined mutations correspond to novel mutations reported for the first time by our group. In case of recurrence, number of occurrence is indi-
cated between parentheses next to the mutation. Black triangles, white squares, black square, black circle, and black stars, respectively, indicate
frameshift mutations, nonsense mutations, in frame mutation, missense mutations, and splice site mutations. Aa amino acid, Nt nucleotide
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FIGURE 3 Graphical representation of GPC3 intragenic rearrangements. An * indicates a novel rearrangement reported for the first time by
our group. Black circles indicate translocations. Black rectangles correspond to deletions and gray rectangles to duplications. Dotted rectangles
indicate a deletion or duplication for which the exact location of the 3’ breakpoint remains uncertain. In case of recurrence, number of occurrence

is indicated between parentheses next to the rearrangement

The second missense mutation, c.1666G > A, p.(Gly556Arg), occurred
in a region critical for cleavage of GPC3, which is necessary for GPC3
to be anchored to the plasma membrane via GPI linkage. Western
blot analysis and immunostaining showed that the mutant protein
was not glycanated and was present in the cell lysate and the condi-
tioned medium instead of being attached to the cell surface. This defect
was shown to impair the Hedgehog inhibitory activity of GPC3 (Shi &
Filmus, 2009).

2.1.2 | Inframe mutation

Only one in frame mutation was identified in GPC3 gene:
¢.780_785delinsAGC, p.(Trp260*). This mutation, by inserting three
nucleotides and deleting six nucleotides, changes the amino acid
Tryptophan to a stop codon at position 260 leading to a premature
truncation of GPC3.

2.1.3 | Nonsense and frameshift mutations

Fourteen nonsense and 21 frameshift mutations have been iden-
tified in GPC3 including the two novel nonsense mutations and
11 novel frameshift mutations of our cohort. All these mutations
introduced a premature stop codon except a mutation, c.1692del,
p.(Leu565Serfs*63), recently identified by whole exome sequencing in

a child with an unknown overgrowth syndrome (Das Bhowmik & Dalal,

2015). This hemizygous single base pair deletion in exon 8 of GPC3
results in a frameshift which increases the length of the protein by
adding 46 news amino acids towards the 3’UTR region instead of caus-
ing a premature truncation. As exon 8 encodes the signal sequence for
the HS attachment and GPI anchorage at the cell surface, this mutation
could impair GPC3 function by disrupting the attachment of GPC3 to

the exocytoplasmic surface of the plasma membrane.

2.1.4 | Splice site mutations

Two splice site mutations were previously described, ¢.337+1G > A
and c. 1292+1G > T, and two were identified in our cohort,
c.175+1G > A and ¢.175+2T > C. These four mutations disrupted
the consensus GU donor site. As expected, splice-site prediction pro-
grams (MaxEntScan, NNSPLICE and Human Splicing Finder programs)
available on Alamut v2.8.0 software predicted a decrease of splice site
score of 100% leading to a probable exon 1 (mutations c.175+1G > A
and ¢.175+2T > C), exon 2 (mutation ¢.3374+1G > A) or exon 5
(c.1292+1G > T) skipping (Cf. Supp. Table S3).

2.2 | GPC3large rearrangements

Thirty-seven GPC3 rearrangements including 30 deletions and seven
duplications were reported in 57 out of the 120 unrelated probands

suggesting that large-scale rearrangements may be responsible for
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almost half of the cases of SGBS. These rearrangements are listed in
Tables 1 and 2 and represented in Figure 3.

Deletions and duplications were described for each exon with
ten rearrangements (27%) encompassing only one exon. Exon 5 is
the only exon which was not found deleted or duplicated alone
(Cf. Figure 3).

Eight of these rearrangements (21.6 %) were recurrent. Deletion of
exon 1 and deletion of exon 8 were the most common, each detected in
six unrelated families. Deletion of exon 7 and deletion of exon 1 to exon
2 were also frequent and each detected in four unrelated families. Four
other rearrangements, deletion of exon 3 to 5, deletion of exon 6 to 7,
deletion of exon 6 to 8 and duplication of exon 2 were detected twice
(Cf. Figure 3).

At least 13 out of 37 (35%) of these rearrangements alter the open
reading frame by introducing a premature stop codon and 5/37 (13%)
remove the proper start codon. Five rearrangements, one deletion and
four duplications, were studied at the cDNA level. cDNA analysis con-
firmed the in silico predictions for deletion of exons 5 to 6 (Schmidt
et al, 2017) and showed that duplications of exon 2 to 4, exon 3 to
6, and exon 7 also lead to the truncation of the protein with a com-
plete absence of GPI anchoring domain ((Mateos et al., 2013; Vuil-
laume et al., 2018), whereas duplication of exon 2 maintains the open
reading frame with an insertion of 54 amino acids which probably dis-
rupts the conserved glypican three-dimensional structure (Cottereau
etal., 2014).

GPC3 rearrangements were initially detected by Southern Blot and
PCR in case of deletions (Hughes-Benzie et al., 1996; Li et al., 2001;
Lindsay et al., 1997; Rodriguez-Criado et al., 2005; Veugelers et al.,
1998, 2000) and by MLPA in case of duplications (Kehrer et al., 2016;
Mateos et al., 2013; Ochiai et al., 2013; Vaisfeld et al., 2017). Recently,
array-CGH also allowed the detection of GPC3 rearrangements (Cf.
Table 3) in eight cases of prenatal diagnosis (DiMaio et al., 2017;
Ganesamoorthy et al,, 2013; Magini et al., 2016; Stgve et al., 2017,
Vuillaume et al., 2018; Weichert et al., 2011) and, in three postna-
tal cases of SGBS (Schmidt et al., 2017; Shimojima et al., 2016). In
our cohort, chromosomal microarray was performed, after PCR, in
order to fine-map rearrangement breakpoints when they occurred
at the 5’ and/or 3’end of GPC3 (Cf Table 3). Overall, 21 rearrange-
ments associated with SGBS, ranging from 30 kb to 1.7 Mb, were iden-
tified or fine-mapped by array-CGH. Nine of these rearrangements
encompassed GPC3 neighboring genes (Cf Supp. Figure S2) but did
not seem to have a more pronounced effect on the phenotype. How-
ever, given the fact that only few breakpoints occurring at the 5’ or
3’ end of GPC3, have been precisely characterized, it remains difficult
to establish genotype/phenotype correlations according to the gene
content of these rearrangements. The contribution of other genes
is still questionable as illustrated by the patient reported by Young
et al. (2006) who had an unusual facial appearance with an external
ear malformation and a deletion of which the 5’ breakpoint is not
determined.

Of note, a large number of deletions and duplications encompass-
ing the whole GPC3 gene and many other genes are found in public
databases (DECIPHER, ISCA, and dbVar databases). All GPC3 deletions

are expected to be associated with SGBS.

As discussed previously (Vuillaume et al, 2018), six small
duplications with a size ranging from 126 kb to 1.035 Mb
(nssv584468, nssv13650346, DECIPHER 258050, DECIPHER
326611, nssv1415234, nssv13644225) could lead to a GPC3 loss-of-
function by disrupting the reading frame even if features consistent
with SGBS were documented in only two of them (DECIPHER
258050, nssv13644225) and no functional molecular analysis was
performed.

2.3 | Translocations

Two X/autosomes translocations t(X,1) and t(X,16) were the first muta-
tions described as associated with SGBS (Pilia et al., 1996; Punnett,
1994) allowing the recognition of GPC3 as responsible for the dis-
ease. These translocations were identified in two unrelated female
patients with SGBS. The use of STSs derived from different portions
of GPC3 showed that t(X,1) translocation interrupted the gene in the
second intron, whereas t(X,16) translocation interrupted the gene in
the seventh intron, both translocations leading to a probable loss-of-
functional GPC3.

3 | FUNCTIONAL IMPACT OF GPC3
MUTATIONS

GPC3 mutations are dispersed throughout all the coding regions of the
gene with no obvious mutation hotspots. The vast majority of these
mutations are deletions or truncating mutations (frameshift, nonsense
mutations) predicted to result in a loss-of-function. Other types of
mutations such as missenses mutations or duplications are less fre-
quent and were also shown to alter GPC3 function when they were
functionally characterized (Cottereau et al., 2014; Mateos et al., 2013;
Veugelers et al., 2000; Vuillaume et al., 2018). These observations
should be taken into account for the interpretation of novel GPC3 vari-
ants as a lot of variants are nowadays identified by next-generation
sequencing.

4 | GENOTYPE/PHENOTYPE
CORRELATIONS

Supp. Table S1 summarizes the main clinical features associated with
each mutation found in our cohort of 63 patients belonging to 49 unre-
lated families. Clinical features of 42 of these male cases were previ-
ously reviewed by our team (Baujat et al., 2005; Cottereau et al., 2013;
Jedraszak et al., 2014; Pénisson-Besnier et al., 2008; Ratbi, Elalaoui,
Moizard, Raynaud, & Sefiani, 2010). We did not find any link between
specific clinical symptoms and specific mutations, mutation type or
location in GPC3. Our observations are in line with previous stud-
ies (Cottereau et al.,, 2013; Hughes-Benzie et al., 1996; Mariani et al.,
2003), which have not found a robust genotype-phenotype correlation
in SGBS.
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5 | CLINICAL AND DIAGNOSTIC
RELEVANCE

The diagnosis of classical SGBS is based on several criteria includ-
ing typical clinical symptoms, family history consistent with X-linked
inheritance and molecular genetic testing for GPC3 mutations. Typi-
cal clinical symptoms, especially in males, mostly include overgrowth
(macrosomia, macrocephaly, and/or pre-and postnatal overgrowth),
typical facial features, hand anomalies, supernumerary nipples, con-
genital malformations, and tumor predisposition. Variable degree of
intellectual disability may be present. The identification of a GPC3
mutation confirms the clinical diagnosis allowing a more appropriate
management, and allows a reliable genetic counseling and prenatal
diagnosis if desired. In France, two laboratories (Tours and Paris) offer
molecular genetic testing for GPC3 mutations since the early 2000’s
with a combined approach based on PCR, direct sequencing and MLPA
analysis. Management of SGBS includes treatment of neonatal hypo-
glycemia and requires a multidisciplinary approach with pediatric car-
diologists, neurologists, orthopedics, and speech therapists. Specific
management and follow-up of tumors especially Wilms tumors, liver
tumors and gonadoblastoma should be performed in all individuals
with SGBS. In families at risk, prenatal diagnosis may be proposed
with careful ultrasound follow up in order to detect disproportion-
ate fetal overgrowth often associated with elevated maternal serum

alpha-fetoprotein.

6 | ANIMAL MODELS

Currently, two glypican-encoding genes have been identified in
Drosophila melanogaster, and were shown to play an important role in
development. The best-characterized gene is dally (division abnormally
delayed), a gene involved in cell division patterning in the visual system.
In Dally mutants, cell cycle progression is impaired leading to morpho-
logical and developmental defects in several tissues including the eyes,
brain, antenna, wings, and genitalia (Nakato, Futch, & Selleck, 1995).
Interestingly, a decrease of dally expression is associated with segment
polarity defects similar to the ones caused by the loss of Wingless (Wg)
activity (Lin & Perrimon, 1999; Tsuda et al., 1999). The second glypican
gene found in D. melanogaster is dally-like (dly), a gene also implicated in
the Wingless mediated patterning of the developing embryo. This gene
regulates extracellular growth factor distribution and, in some cases,
may block growth factor signaling (Baeg, Lin, Khare, Baumgartner,
& Perrimon, 2001). This gene is also required for the reception of
Hedgehog (Hh) signal known to promote embryonic growth
(Desbordes & Sanson, 2003).

Inmice targeted deletion of Gpc3 results in some of the typical SGBS
abnormalities including developmental overgrowth, perinatal death,
renal dysplasia, accessory spleens, impaired lung development, poly-
dactyly, and placentomegaly (Cano-Gauci et al., 1999). This knock-
out phenotype, in accordance to the human overgrowth phenotype,
suggests that GPC3 can act as a negative regulator of cell prolifer-
ation. It was first suggested that GPC3 acts as an inhibitor of IGF-II
(Pilia et al., 1996) given the critical role of insulin-like-growth factor Il

(IGF-11) in the regulation of embryonic growth. However, this hypoth-
esis was ruled out after several experiments showing that GPC3 does
not interact with IGF-I1. Furthermore, GPC3-null embryos display nor-
mal levels of IGF-IlI without any genetic interaction when they are
crossed with various mouse strains lacking critical components of the
IGF signaling pathways (Cano-Gauci et al., 1999; Chiao et al., 2002;
Song, Shi, & Filmus, 1997). In humans, the overgrowth phenotype could
be due, at least in part, to the hyperactivation of Hedgehog signaling.
This latter hypothesis was strongly supported by the fact that Hedge-
hog signaling was elevated in GPC3-null mice (Capurro et al., 2008)
and that GPC3-null embryos display higher levels of Sonic Hedgehog
and Indian Hedheog proteins than normal littermates (Capurro et al.,
2008; Capurro, Li, & Filmus, 2009). Moreover, GPC3 knock-out mice
also exhibit alterations in the Wnt signaling pathway (Song, Shi, Xiang,
& Filmus, 2005).

7 | CONCLUSION AND FUTURE PROSPECTS

In this mutation update, we review the current state of our knowledge
on human GPC3 mutations. We have compiled previously reported
and novel mutations of GPC3 gene responsible for classical SGBS
and collected 86 distinct GPC3 mutations in 120 unrelated families.
These mutations ranging from single nucleotide variations to complex
genomic rearrangements involve the entire coding region of GPC3.
Most of them are unique, inherited and are predicted to result in a
lack of functional GPC3. Only 18% of these mutations occurred de
novo. Missense mutations are rare and those which were functionally
characterized also impaired GPC3 function. In most cases, mutations
were identified by a targeted analysis of GPC3 in patients clinically
diagnosed with SGBS. Recently, eleven GPC3 variants were found by
high-throughput technologies without a preliminary established clin-
ical diagnosis of SGBS. Ten of these variants are clearly associated
with SGBS phenotype. Nine were detected prenatally by chromoso-
mal microarray (DiMaio et al., 2017; Ganesamoorthy et al., 2013; Mag-
ini et al., 2016; Mujezinovic et al., 2016; Stave et al., 2017; Weichert
etal.,, 2011) or whole exome sequencing (Magini et al., 2016) in fetuses
with abnormal ultrasound findings. In these fetuses, clinical features
including notably fetal overgrowth, craniofacial abnormalities (DiMaio
et al.,, 2017; Magini et al., 2016; Mujezinovi¢ et al., 2016; Stgve et al.,
2017; Weichert et al.,, 2011), and congenital diaphragmatic hernia
(Ganesamoorthy et al., 2013) were retrospectively in line with SGBS
diagnosis. Two other variants were detected postnatally by next-
generation sequencing. The first variant was found by whole exome
sequencing in a patient with an unknown overgrowth syndrome, ret-
rospectively fully compatible with SGBS (Das Bhowmik & Dalal, 2015).
The last variant, a frameshift mutation c.1243del, p.(Val415Trpfs*27),
leading to a stop premature codon, was highlighted by next-generation
sequencing targeting a panel of genes associated with intellectual dis-
ability in a cohort of 996 patients with moderate-to-severe intellectual
disability (Grozeva et al., 2015). However, owing to the lack of addi-
tional clinical data we were not able to interpret this variant regarding
SGBS phenotype, and it was not included in the present review. This

illustrates that, with the advent of such large-scale approaches, new
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GPC3 rare variants may be revealed incidentally. An accurate evalu-
ation of these variants coupled with a thorough phenotyping will be
needed in order to assess their potential involvement in SGBS. This
report by describing for the first time the wide mutational spectrum of
GPC3 could help clinicians and geneticists in confirming a clinical diag-
nosis and, more importantly, in interpreting incidental variants of GPC3
which will be found with next-generation sequencing.
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