Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature

Marie-Laure Vuillaume ${ }^{1,2}$ (D) | Marie-Pierre Moizard ${ }^{1,2}$ | Sylvie Rossignol ${ }^{3,4}$ |
Edouard Cottereau ${ }^{1}$ | Sandrine Vonwill ${ }^{1,2}$ | Jean-Luc Alessandri ${ }^{5}$ | Tiffany Busa ${ }^{6}$ |
Estelle Colin ${ }^{7} \mid$ Marion Gérard $^{8} \mid$ Fabienne Giuliano $^{9} \mid$ Laetitia Lambert 10 |
Mathilde Lefevre ${ }^{11}$ | Udhaya Kotecha ${ }^{12}$ | Sheela Nampoothiri ${ }^{13}$ | Irène Netchine 3 |
Martine Raynaud ${ }^{1,2}$ | Frédéric Brioude ${ }^{3}$ | Annick Toutain ${ }^{1,2}$

${ }^{1}$ Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France
${ }^{2}$ INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
${ }^{3}$ Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
${ }^{4}$ Service de génétique médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
${ }^{5}$ Hôpital Félix Guyon Bellepierre, CHU de la Réunion, Saint-Denis, France
${ }^{6}$ Unité de Génétique Clinique, Département de génétique médicale, Hôpital de la Timone, CHU de Marseille, Marseille, France
${ }^{7}$ Département de biochimie et génétique, CHU d'Angers, Angers, France
${ }^{8}$ Service de génétique, CHU de Caen, Hôpital Clémenceau, Avenue Georges Clémenceau, Caen, France
${ }^{9}$ Service de génétique médicale, CHU de Nice, Hôpital l'Archet 2, Nice, France
${ }^{10}$ Service de Génétique Clinique, Hôpital d'Enfants, CHU de Nancy, Rue du Morvan, Vandoeuvre-Lès-Nancy, France
${ }^{11}$ Centre de génétique, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France
${ }^{12}$ Center of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
${ }^{13}$ Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, AIMS Poneakara P O, Cochin, Kerala, India

Correspondence

Annick Toutain, Service de Génétique, Centre Hospitalier Universitaire, 2 Boulevard Tonnellé, 37044 Tours cedex 9, France.
Email: annick.toutain@univ-tours.fr
Communicated by Maria Rita Passos-Bueno

Abstract

Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications).

KEYWORDS

GPC3, mutations, overgrowth, Simpson-Golabi-Behmel syndrome, X-linked disorder

1 | INTRODUCTION

Simpson-Golabi-Behmel syndrome (SGBS) (MIM\# 312870) is an X-linked disorder first reported by Simpson, Landey, New, and German (1975) and subsequently described by Golabi \& Rosen (1984) and Behmel, Plöchl, and Rosenkranz (1984). Clinically SGBS is characterized by pre- and postnatal overgrowth, macrocephaly, dysmorphic facial features including coarse facies, extremities abnormalities, supernumerary nipples, organomegaly, cardiac, skeletal, gastrointestinal, and genitourinary malformations (Cottereau et al., 2013; Golabi, Leung, \& Lopez, 2011). An increased risk of developing embryonal tumors, especially Wilms and liver tumors, is also associated with this syndrome and, in some cases, mild to moderate intellectual disability may be observed (Li et al., 2001; Neri, Gurrieri, Zanni, \& Lin, 1998). This disorder is caused by loss-of-functional glypican-3 gene, GPC3 (MIM\# 300037). This gene which maps to Xq26.2, contains eight exons and has a full-length transcript of 2.568 kb (NM_004484), which codes for GPC3, a 70 kDa core protein of 580 amino acids. GPC3 is a member of the glypican family which includes six known mammalian heparan sulfate proteoglycans (HSPGs) that are bound to the exocytoplasmic surface of the plasma membrane through a covalent glycosylphosphatidylinositol (GPI) linkage. All glypicans share a characteristic structure with a conserved pattern of 14 cysteine residues and an heparan sulfate (HS) glycan chain in the C-terminal region close to the cell membrane. They regulate the signaling of WNTs, Hedgehogs, fibroblast growth factors, and bone morphogenetic proteins (Filmus, 2001; Filmus, Capurro, \& Rast, 2008; Song \& Filmus, 2002). GPC3, for its part, negatively regulates cell proliferation by inhibiting Hedgehog (Capurro et al., 2008) and by modulating WNT signaling pathways (Filmus \& Capurro, 2013). In 2011, GPC4 (MIM\# 300138), a second gene coding for another member of the glypican family, was also suggested to be associated with SGBS. However, only one duplication of this gene has been reported in a family with SGBS by Golabi and Rosen (Waterson, Stockley, Segal, \& Golabi, 2010). This duplication encompasses the whole GPC4 gene with uncharacterized breakpoints as it was identified by multiplex ligation-dependent probe hybridization (MLPA). Moreover, no point mutations could be identified so far, questioning the exact role of this gene in the pathogenesis of SGBS (Cottereau et al., 2013). Finally, GPC4 deficient mice do not exhibit features suggestive of SGBS (The Jackson Laboratory, https://www.jax.org). Up to now, GPC3 remains the principal monogenic contributor to SGBS.

From a clinical point of view, the SGBS has been well characterized. Indeed, the clinical features in a cohort of 42 patients with a molecularly confirmed diagnosis of SGBS were reviewed by our team in 2013, and compared with those of the literature in order to define specific clinical criteria for GPC3 molecular testing. Nevertheless, the global genotypic spectrum of GPC3 mutations has never been delineated even if isolated cases or small series of GPC3 mutations were published. In this study, we review the 57 previously described GPC3 mutations identified in 71 unrelated families. We significantly expand the mutational spectrum of GPC 3 with the description of 38 additional GPC3 mutations, from which 29 were novel, in our patient cohort of 49 unrelated families.

2 | MUTATIONAL SPECTRUM

Table 1 details GPC3 mutations published between March 1996 and December 2017 in the international peer-reviewed literature (PubMed database) and The Human Gene Mutation Database (HGMD professional 2016.4) following HGVS nomenclature guidelines (www.HGVS.org) and the reference sequence GenBank entry NM_004484.3. We collected 57 distinct GPC3 mutations detected in 71 unrelated families (Agatep et al., 2014; Das Bhowmik \& Dalal, 2015; Day \& Fryer, 2005; DiMaio, Yang, Mahoney, McGrath, \& Li, 2017; Ganesamoorthy et al., 2013; Garavelli et al., 2012; Gertsch, Kirmani, Ackerman, \& Babovic-Vuksanovic, 2010; Gurrieri et al., 2011; Halayem et al., 2016; Hughes-Benzie et al., 1996; Kehrer et al., 2016; Kosaki et al., 2014; Li et al., 2001; Lindsay et al., 1997; Magini et al., 2016; Mariani et al., 2003; Mateos et al., 2013; Mujezinović et al., 2016; Ochiai et al., 2013; Okamoto, Yagi, Imura, \& Wada, 1999; Pilia et al., 1996; Rodríguez-Criado et al., 2005; Romanelli et al., 2007; Sakazume et al., 2007; Schmidt, Hollstein, Kaiser, \& GillessenKaesbach, 2017; Shimojima et al., 2016; Spencer, Fieggen, Vorster, \& Beighton, 2016; Støve et al., 2017; Thomas et al., 2012; Vaisfeld, Pomponi, Pietrobono, Tabolacci, \& Neri, 2017; Veugelers et al., 1998, 2000; Villarreal et al., 2013; Weichert et al., 2011; Xuan, HughesBenzie, \& MacKenzie, 1999; Yano et al., 2011; Young, Wishnow, \& Nigro, 2006). In this study, we also report 38 GPC3 mutations in 63 additional male patients from 49 unrelated families (Cf. Table 2 and Supp. Table S1). These mutations were submitted to LOVD database (https://databases.lovd.nl/shared/genes/GPC3). The carrier status of the proband's mother has been ascertained for 33 out of the 49 (67%) unrelated probands. Twenty seven of these mutations were inherited from the mother (82\%) and only six mutations occurred de novo (18\%) as indicated in Supp. Table S1. Twenty nine of these mutations are reported for the first time (Cf. Table 2).

Overall, including our data and those of the literature, a total of 86 distinct mutations were found in 120 unrelated patients. In silico predictions show that the majority of these mutations (49 out of 86) lead to the occurrence of a premature stop codon. Although all types of mutation were found, the most prevalent type was large deletions (34.9\%) followed by frameshift mutations leading to a stop premature codon (24.4\%), nonsense mutations (16.3%), missense mutations (8.1\%), large duplications (8.1\%), splice site mutations (4.7\%), translocations (2.3\%), and one in frame mutation (1.2\%) (Cf. Figure 1). Most mutations are unique: 86% of mutations (74 out of 86) have been found only in single families, 9.3% (eight out of 86) between 2 and 5 families and 4.6% (four out of 86) have been found in more than six families.

2.1 | Point mutations

Forty-seven distinct point mutations including one base substitutions and small insertions/deletions (54.6\%) were reported in 61 out of the 120 unrelated probands. A schematic view of GPC3 gene and the distribution of these point mutations are presented in Figure 2. Mutations were scattered along the entire coding sequence of GPC3 (Figure 2). The distribution of point mutations was not uniform although they were found in every exon. Nearly half of the pathogenic
TABLE 1 GPC3 mutations associated with Simpson-Golabi-Behmel Syndrome previously reported by other groups

Mutation type	Position	Nucleotide change	Amino-acid change	Variant reference (dbSNP, ClinVar)	Unrelated families in the literature	References
Missense	Exon 3	c.886T>A	p.(Trp296Arg)	rs104894854, RCV000012453.23	1	Veugelers et al. (2000)
Nonsense	Exon 2	c.195T>A	p.(Cys65 ${ }^{\text {a }}$)		1	Veugelers et al. (2000)
	Exon 2	c. $256 \mathrm{C}>$ T	p.(Arg86a)		3	Gertsch et al., 2010; Sakazume et al., 2007; Yano et al., 2011
	Exon 3	c.346G>T	p.(Glu116 ${ }^{\text {a }}$)		1	Magini et al., 2016
	Exon 3	c.595C>T	p. $\left(\operatorname{Arg} 199^{\text {a }}\right.$)	rs104894855, RCV000012455.15	1	Veugelers et al., 2000
	Exon 3	c.691C>T	p.(Gln $231^{\text {a }}$)		1	Sakazume et al., 2007
	Exon 3	c. $760 \mathrm{C}>\mathrm{T}$	p. (Arg254 ${ }^{\text {a }}$)		1	Sakazume et al., 2007
	Exon 3	c.999T>A	p.(Tyr333a)		1	Kehrer et al., 2016
	Exon 3	c. $1018 \mathrm{~A}>\mathrm{T}$	p.(Lys340a)		1	Veugelers et al., 2000
	Exon 4	c.1159C>T	p. (Arg387a)	$\begin{aligned} & \text { rs122453121, } \\ & \text { RCV000012460.15 } \end{aligned}$	3	Kosaki et al., 2014; Romanelli et al. 2007; Sakazume et al., 2007
	Exon 5	c.1276C>T	p.(Gln $426^{\text {a }}$)		1	Gurrieri et al., 2011
	Exon 6	c. $1330 \mathrm{C}>$ T	p. $\left(\mathrm{G} \ln 444^{\text {a }}\right.$)		1	Shimojima et al., 2016
	Exon 7	c.1515del	p.(Cys505a)		1	Okamoto et al., 1999
In frame with stop gain	Exon 3	c.780_785delinsAGC	p. $\left(\operatorname{Trp} 260^{\text {a }}\right.$)		1	Sakazume et al., 2007
Frameshift	Exon 1	c.90_91dup	p.(Pro31Argfs ${ }^{\text {5 }}$ 4)		1	Shimojima et al., 2016
	Exon 2	c.194_206del	p.(Cys65Serfs ${ }^{\text {1 }}$ 15)	RCV000012451.25	1	Xuan et al., 1999
	Exon 2	c.240dup	p.(Tyr811lefs ${ }^{\text {a }} 36$)		1	Sakazume et al., 2007
	Exon 3	c.595_597delinsGG	p.(Leu205a)		1	Garavelli et al., 2012
	Exon 3	c.758del	p.(Gly 253Alafs ${ }^{\text {a }}$ 16)		1	Shimojima et al., 2016
	Exon 3	c.767del	p.(Leu256Profs ${ }^{\text {1 }}$ 13)		1	Veugelers et al., 2000
	Exon 3	c.845dup	p.(Met282Ilefs ${ }^{\text {a }}$ 12)		1	Kehrer et al., 2016
	Exon 4	c.1071_1074delinsCTT	p. (Arg358Phefs ${ }^{\text {a }} 16$)		1	Spencer et al., 2016
	Exon 4	c.1076delinsAT	p.(Ser359Tyrfs ${ }^{\text {a }}$)		1	Villarreal et al., 2013
	Exon 8	c.1692del	p.(Leu565Serfs ${ }^{\text {a }} 63$)	RCV000256430.1	1	Das Bhowmik et al. 2015
Splice	Intron 2	c. $337+1 \mathrm{G}>\mathrm{A}$	p.?	RCV000012459.25	1	Rodriguez-Criado et al. 2005
	Intron 5	c. $1292+1 \mathrm{G}>\boldsymbol{T}$	p.?	RCV000012454.15	1	Veugelers et al., 2000

TABLE 1 (Continued)

Mutation type	Position	Nucleotide change	Amino-acid change	Variant reference (dbSNP, ClinVar)	Unrelated families in the literature	References
Deletions	Exon 1	$\begin{aligned} & \text { c.(?-1)_(175+1_176- } \\ & \text { 1)del } \end{aligned}$	p.?		5	Hughes-Benzie et al., 1996 (= Mariani et al., 2003); Li et al., 2001 (= Mariani et al., 2003); Lindsay et al., 1997 (= Mariani et al., 2003); Vaisfeld et al., 2017; Young et al., 2006
	Exons 1-2	$\begin{aligned} & \text { c.(?-1)_(337+1_338- } \\ & \text { 1)del } \end{aligned}$	p.?		3	Lindsay et al., 1997 (= Mariani et al., 2003); Mariani et al., 2003; Veugelers et al., 1998 ($=$ Veugelers et al., $2000=$ Mariani et al., 2003)
	$\begin{aligned} & \text { Exons 1-8 (+ } \\ & \quad \text { CCDC160,GPC4) } \end{aligned}$	c.(?-1)_(12.?)del	p.?		1	Weichert et al., 2011
	Rearrangement of exon 1 + deletion of exon 2	c.?	p.?		1	Thomas et al., 2012
	Deletion including the first 41 nucleotides of exon 2	c.?	p.?		1	Stove et al. 2017
	Exon 2	$\begin{aligned} & \text { c.(175+1_176- } \\ & \text { 1)_(337+1_338-1)del } \end{aligned}$	p.(Gly59_Gln112del)		1	Hughes-Benzie et al., 1996 (= Pilia et al., 1996 = Mariani et al., 2003)
	Exons 2-3a	c.?	p.?		1	Hughes-Benzie et al., 1996 (= Mariani et al., 2003)
	Exon $3^{\text {a }}$	c.?	p.?		1	Hughes-Benzie et al., 1996 (= Mariani et al., 2003)
	Exon 3 (+ exons 3 to 9 of GPC4, TFDP3)	$\begin{aligned} & \text { c.(} 337+1 \text { _338- } \\ & \text { 1)_(1032+1_1033- } \\ & \text { 1)del } \end{aligned}$	p.(Glu113Aspfs ${ }^{\text {a }}$ 14)		1	DiMaio et al., 2017
	Exons 3-4 (size max exons 3-7)	c.?	p.?		1	Magini et al., 2016
	Exons 3-5	c. (337+1_338- 1)_(1292+1_12931)del	p.(Glu113Aspfs ${ }^{\text {a }} 11$)		2	Liet al., 2001 ($=$ Mariani et al., 2003); Li et al., 2001 (= Mariani et al., 2003 = Agatep et al., 2014)
	Exons 3-6	$\begin{aligned} & \text { c.(} 337+1 _338- \\ & \text { 1)_(1413+1_1414- } \\ & \text { 1)del } \end{aligned}$	p.(Glu113Alafs ${ }^{\text {a }} 11$)		1	Day et al. 2005
	Exons 3-8	$\begin{aligned} & \text { c.(337+1_338- } \\ & \text { 1)_(1_? }{ }^{2} \text {)del } \end{aligned}$	p.?		1	Hughes-Benzie et al., 1996 (= Mariani et al., 2003)
	Exon $4^{\text {a }}$	c.?	p.?		1	Lindsay et al., 1997 (= Mariani et al., 2003)
	Exons 4-5	c.(1032+1_1033- 1)_(1292+1_1293- 1)del	p.(Gly346GInfs ${ }^{\text {a }}$ 17)		1	Liet al., 2001 (= Mariani et al., 2003)

TABLE 1 (Continued)

Mutation type	Position	Nucleotide change	Amino-acid change	Variant reference (dbSNP, ClinVar)	Unrelated families in the literature	References
	Exons 5-6	c.(1166+1_1167- 1)_(1413+1_1414- 1)del	p.Arg389Serfs ${ }^{\text {a }} 3$		1	Schmidt et al., 2017
	Exons 5-7	$\text { c. }\left(1166+1 _1167-\right.$ 1)_(1573+1_1574- 1)del	p.(Glu390Thrfs ${ }^{\text {a }} 4$)		1	Liet al., 2001 (= Mariani et al., 2003)
Deletions	Exon 6	$\begin{aligned} & \text { c.(1292+1_1393- } \\ & \text { 1)_(1413+1_1414- } \\ & \text { 1)del } \end{aligned}$	p.(Arg431Serfs ${ }^{\text {a }} 3$)		1	Rodriguez-Criado et al. 2005
	Exons 6-7	$\begin{aligned} & \text { c.(1292+1_1393- } \\ & \text { 1)_(1573+1_1574- } \\ & \text { 1)del } \end{aligned}$	p. (Tyr432 Thrfs ${ }^{\text {a }}$ 4)		1	Liet al., 2001 (= Mariani et al., 2003)
	Exons 6-8	$\begin{aligned} & \text { c.(1292+1_1393- } \\ & \text { 1)_(} \left.{ }^{2} 1 _ \text {? }\right) \mathrm{del} \end{aligned}$	p.?		2	Halayem et al., 2016; Hughes-Benzie et al., 1996 (= Pilia et al., 1996 = Mariani et al., 2003)
	Exon 7	$\begin{aligned} & \text { c.(1413+1_1414- } \\ & \text { 1)_(1573+1_1574- } \\ & \text { 1)del } \end{aligned}$	p.(Leu472Asnfs ${ }^{\text {a }}$ 25)		2	Veugelers et al., 2000 (= Mariani et al., 2003) Sakazume et al., 2007
	Exons 7-8 (+GPC4)	$\begin{aligned} & \text { c.(1292+1_1393- } \\ & \text { 1)_(a } \left.1 _?\right) \text { del } \end{aligned}$	p.?		1	```Hughes-Benzie et al., 1996 (Pilia et al. }199 = Lindsay et al., 1997 = Veugelers et al., 1998 = Mariani et al., 2003)```
	```Exons 7-8 (+ GPC4, TFDP3, USP26, HS6ST2, MBNL3)```	c.?	p.?		1	Ganesamoorthy et al., 2013
	Exon 8	$\begin{aligned} & \text { c.(1573+1_1574- } \\ & \text { 1)_(a 1_?)del } \end{aligned}$	p.?		2	Li et al., 2001 ( = Mariani et al., 2003; Lindsay et al., 1997 ( = Mariani et al., 2003))

TABLE 1 (Continued)

Mutation type	Position	Nucleotide change	Amino-acid change	Variant reference (dbSNP, ClinVar)	Unrelated families in the literature	References
Duplications	Exon 2	$\begin{aligned} & \text { c.(175+1_176- } \\ & \text { 1)_(337+1_338-1)del } \end{aligned}$	p.?		1	Ochiai et al. (2013)
	Exons 2-4	c. $(175+1$ _176-   1)_(1166+1_1167-   1)dup	p.Glu3901lefs ${ }^{\text {a }} 9$		1	Mateos et al. (2013)
	Exons 3-6 (+ GPR101, SNORD61, RBMX)	c.(337+1_338-   1)_(1413+1_1414-   1)dup	p.?		1	Shimojima et al. (2016)
	Exons 3-7	$\begin{aligned} & \text { c.( } 337+1 _338- \\ & \text { 1)_(1573+1_1574- } \\ & \text { 1)dup } \end{aligned}$	p.?		1	Kehrer et al. (2016)
	$\begin{aligned} & \text { exons 6-7(+ GPC4, } \\ & \text { TFDP3, USP26, } \\ & \text { HS6ST2) } \end{aligned}$	$\begin{aligned} & \text { c.(1292+1_1293- } \\ & \text { 1)_(1573+1_1574- } \\ & \text { 1)dup } \end{aligned}$	p.?		1	Mujezinovic et al. (2016)
Translocations	$t(X, 1)$ intron 2	c.?	p.?		1	Pilia et al. (1996) ( = Punnett et al., 1994)
	$t(X, 16)$ intron 7	c.?	p.?		1	Pilia et al. (1996)

Numbering is according to the cDNA sequence (GenBank entry NM_004484.3).
${ }^{\text {a }}$ The exact location of the 3 ' breakpoints of these deletions is unknown as exon 4 and 5 were not analyzed in Hugues Benzie et al.'s study and exon 5 was not analyzed in Lindsay et al.'s study.
TABLE 2 GPC3 mutations identified in the two French laboratories in patients affected with Simpson-Golabi-Behmel Syndrome

Mutation type	Position	Nucleotide change	Amino-acid change	Variant reference (dbSNP, ClinVar)	Unrelated families in our cohort
Missense	Exon 2	c.206G>A	p.(Gly69Asp)		1
	Exon 3	c. 461 T $>$ C	p.(Leu154Pro)		1
	Exon 3	c. $884 \mathrm{~A}>\mathrm{G}$	p.(Tyr295Cys)		1
	Exon 6	c.1413G>C	p.(Gln 471 His )		1
	Exon 8	c. 1666 G>A	p.(Gly 556Arg)	$\begin{aligned} & \text { rs2676060850, } \\ & \text { RCV000012461.22 } \end{aligned}$	3
	Exon 8	c. 1667 G>T	p.(Gly 556 Val$)$		1
Nonsense	Exon 2	c. $256 \mathrm{C}>$ T	p.(Arg86*)		4
	Exon 3	c. $271 \mathrm{C}>$ >	p.(Gln91*)		1
	Exon 3	c.595C>T	p.(Arg199*)	rs104894855, RCV000012455.15	1
	Exon 4	c.1159C>T	p.(Arg387*)	$\begin{aligned} & \text { rs122453121, } \\ & \text { RCV000012460.15 } \end{aligned}$	3
	Exon 6	c.1411C> ${ }^{\text {c }}$	p.(Gln $471^{*}$ )		1
Frameshift	Exon 1	c.80_81delinsT	p.(Pro27Leufs*57)		1
	Exon 1	c.133_136delins AGGACTCTGGA	p.(Leu45Argfs*26)		1
	Exon 2	c.205_206insC	p.(Gly69Alafs*48)		1
	Exon 3	c.408_411del	p.(Ser136Argss*27)		1
	Exon 3	c.530del	p.(Val177Alafs*6)		1
	Exon 3	c.591_610del	p.(Cys197*)		1
	Exon 3	c.662del	p.(Lys221Serfs*13)		1
	Exon 3	c.674_688delinsA	p.(Val225Aspfs*9)		1
	Exon 3	c.758_765del	p.(Gly253Alafs*17)		1
	Exon 3	c.791dup	p.(Tyr264*)		1
	Exon 4	c.1100_1101del	p.(Phe367Tyrfs*2)		1
Splice	Intron 1	c. $175+1 \mathrm{C}>\mathrm{A}$	p.?	RCV000255780.1	1
	Intron 1	c. $175+2 \mathrm{~T}>\mathrm{C}$	p.?		1
Deletions	5'UTR	c.-740_-49del	p.?		1

TABLE 2 (Continued)

Numbering is according to the cDNA sequence (GenBank entry NM_004484.3).


FIGURE 1 Pie chart summarizing the distribution of the 86 GPC3 mutations
point mutations were found in exon 3 ( 22 out of 47) (Supp. Figure S1A). However, when the number of mutations was corrected to the number of bases in each exon, there was no overrepresentation of mutations in this exon compared to the others, suggesting that exon 3 was not a hot-spot of mutation but that it was affected proportionally to its length (Supp. Figure S1B). Exon 2 showed the highest relative rate of mutations per base, whereas exon 7 appeared the less vulnerable to point mutations. Only 8.5\% (4/47) of these point mutations were recurrent (Cf. Figure 2). The most frequent mutations were two nonsense
mutations, c. 256C > T, p.(Arg86*) and c.1159C > T, p.(Arg387*) detected in seven and six unrelated families respectively. One missense mutation c.1666G > A, p.(Gly556Arg) was also detected in three unrelated families and one nonsense mutation, c.595C > T, p.(Arg199*) in two unrelated families.

### 2.1.1 | Missense mutations

The seven missense mutations, among which six were detected in our cohort, were interpreted in silico with Alamut v2.8.0 software (Interactive Biosoftware, Rouen, France; https://www.interacti vebiosoftware.com). Polyphen2, SIFT, and Mutation Taster prediction programs were used to assess the predicted pathogenicity of each variation (Cf. Supp. Table S2). All these mutations were predicted to be "disease causing" or "probably damaging" by Mutation Taster and Polyphen-2, respectively, whereas only one of these mutations, c.886T > A, p.(Trp296Arg) was classified as deleterious by SIFT analysis. Functional studies were performed for two missense mutations, c.886T > A, p. $($ Trp296Arg) and c.1666G > A, p.(Gly556Arg) (Shi \& Filmus, 2009; Veugelers et al., 2000). These mutations both altered a conserved amino acid found in all glypicans and resulted in a loss-offunction. For the c.886T > A, p.(Trp296Arg) mutation, functional studies showed that the mutant protein was poorly processed and failed to increase the cell surface expression of HS (Veugelers et al., 2000).


FIGURE 2 Distribution of GPC3 previously described and novel point mutations. Genomic structure of GPC3 gene including 8 exons (black boxes) and introns (black horizontal lines) is represented. cDNA numbering below exons is according to NM_004484.3 and uses +1 as the A of the ATG translation initiation codon in the reference sequence, with the initiation codon as codon 1. GPC3 protein structure is represented above GPC3 genomic structure. N-terminal signal peptide ( $\mathrm{SS}=$ Signal Sequence for secretion; residues 1-24); N terminus (residues 25-358), C-terminus (residues 359-559) and C terminal GPI anchor addition signal (GPI: glycosylphosphatidylinositol; residue 560-580) are represented. Amino acid numbers are indicated above GPC3 protein structure. Mutations above GPC3 protein represent exonic mutations and are displayed as changes at protein level (p). Mutations below GPC3 gene represent intronic mutations affecting the splice sites and are displayed as changes at DNA level (c). Underlined mutations correspond to novel mutations reported for the first time by our group. In case of recurrence, number of occurrence is indicated between parentheses next to the mutation. Black triangles, white squares, black square, black circle, and black stars, respectively, indicate frameshift mutations, nonsense mutations, in frame mutation, missense mutations, and splice site mutations. Aa amino acid, Nt nucleotide


FIGURE 3 Graphical representation of GPC3 intragenic rearrangements. An * indicates a novel rearrangement reported for the first time by our group. Black circles indicate translocations. Black rectangles correspond to deletions and gray rectangles to duplications. Dotted rectangles indicate a deletion or duplication for which the exact location of the $3^{\prime}$ breakpoint remains uncertain. In case of recurrence, number of occurrence is indicated between parentheses next to the rearrangement

The second missense mutation, c.1666G > A, p.(Gly556Arg), occurred in a region critical for cleavage of GPC3, which is necessary for GPC3 to be anchored to the plasma membrane via GPI linkage. Western blot analysis and immunostaining showed that the mutant protein was not glycanated and was present in the cell lysate and the conditioned medium instead of being attached to the cell surface. This defect was shown to impair the Hedgehog inhibitory activity of GPC3 (Shi \& Filmus, 2009).

### 2.1.2 In frame mutation

Only one in frame mutation was identified in GPC3 gene: c.780_785delinsAGC, p.(Trp260*). This mutation, by inserting three nucleotides and deleting six nucleotides, changes the amino acid Tryptophan to a stop codon at position 260 leading to a premature truncation of GPC3.

### 2.1.3 Nonsense and frameshift mutations

Fourteen nonsense and 21 frameshift mutations have been identified in GPC3 including the two novel nonsense mutations and 11 novel frameshift mutations of our cohort. All these mutations introduced a premature stop codon except a mutation, c.1692del, p.(Leu565Serfs*63), recently identified by whole exome sequencing in a child with an unknown overgrowth syndrome (Das Bhowmik \& Dalal,
2015). This hemizygous single base pair deletion in exon 8 of GPC3 results in a frameshift which increases the length of the protein by adding 46 news amino acids towards the $3^{\prime}$ UTR region instead of causing a premature truncation. As exon 8 encodes the signal sequence for the HS attachment and GPI anchorage at the cell surface, this mutation could impair GPC3 function by disrupting the attachment of GPC3 to the exocytoplasmic surface of the plasma membrane.

### 2.1.4 | Splice site mutations

Two splice site mutations were previously described, c.337+1G > A and c. $1292+1 \mathrm{G}>\mathrm{T}$, and two were identified in our cohort, c.175+1G > A and c.175+2T > C. These four mutations disrupted the consensus GU donor site. As expected, splice-site prediction programs (MaxEntScan, NNSPLICE and Human Splicing Finder programs) available on Alamut v2.8.0 software predicted a decrease of splice site score of $100 \%$ leading to a probable exon 1 (mutations c.175+1G > A and $c .175+2 \mathrm{~T}>\mathrm{C}$ ), exon 2 (mutation $c .337+1 \mathrm{G}>\mathrm{A}$ ) or exon 5 (c. $1292+1 G>T$ ) skipping (Cf. Supp. Table S3).

## 2.2 | GPC3 large rearrangements

Thirty-seven GPC3 rearrangements including 30 deletions and seven duplications were reported in 57 out of the 120 unrelated probands suggesting that large-scale rearrangements may be responsible for
almost half of the cases of SGBS. These rearrangements are listed in Tables 1 and 2 and represented in Figure 3.

Deletions and duplications were described for each exon with ten rearrangements (27\%) encompassing only one exon. Exon 5 is the only exon which was not found deleted or duplicated alone (Cf. Figure 3).

Eight of these rearrangements ( 21.6 \%) were recurrent. Deletion of exon 1 and deletion of exon 8 were the most common, each detected in six unrelated families. Deletion of exon 7 and deletion of exon 1 to exon 2 were also frequent and each detected in four unrelated families. Four other rearrangements, deletion of exon 3 to 5, deletion of exon 6 to 7, deletion of exon 6 to 8 and duplication of exon 2 were detected twice (Cf. Figure 3).

At least 13 out of 37 (35\%) of these rearrangements alter the open reading frame by introducing a premature stop codon and 5/37 (13\%) remove the proper start codon. Five rearrangements, one deletion and four duplications, were studied at the cDNA level. cDNA analysis confirmed the in silico predictions for deletion of exons 5 to 6 (Schmidt et al., 2017) and showed that duplications of exon 2 to 4 , exon 3 to 6, and exon 7 also lead to the truncation of the protein with a complete absence of GPI anchoring domain ((Mateos et al., 2013; Vuillaume et al., 2018), whereas duplication of exon 2 maintains the open reading frame with an insertion of 54 amino acids which probably disrupts the conserved glypican three-dimensional structure (Cottereau et al., 2014).

GPC3 rearrangements were initially detected by Southern Blot and PCR in case of deletions (Hughes-Benzie et al., 1996; Li et al., 2001; Lindsay et al., 1997; Rodríguez-Criado et al., 2005; Veugelers et al., 1998,2000 ) and by MLPA in case of duplications (Kehrer et al., 2016; Mateos et al., 2013; Ochiai et al., 2013; Vaisfeld et al., 2017). Recently, array-CGH also allowed the detection of GPC3 rearrangements (Cf. Table 3) in eight cases of prenatal diagnosis (DiMaio et al., 2017; Ganesamoorthy et al., 2013; Magini et al., 2016; Støve et al., 2017; Vuillaume et al., 2018; Weichert et al., 2011) and, in three postnatal cases of SGBS (Schmidt et al., 2017; Shimojima et al., 2016). In our cohort, chromosomal microarray was performed, after PCR, in order to fine-map rearrangement breakpoints when they occurred at the $5^{\prime}$ and/or $3^{\prime}$ end of GPC3 (Cf Table 3). Overall, 21 rearrangements associated with SGBS, ranging from 30 kb to 1.7 Mb , were identified or fine-mapped by array-CGH. Nine of these rearrangements encompassed GPC3 neighboring genes (Cf Supp. Figure S2) but did not seem to have a more pronounced effect on the phenotype. However, given the fact that only few breakpoints occurring at the $5^{\prime}$ or $3^{\prime}$ end of GPC3, have been precisely characterized, it remains difficult to establish genotype/phenotype correlations according to the gene content of these rearrangements. The contribution of other genes is still questionable as illustrated by the patient reported by Young et al. (2006) who had an unusual facial appearance with an external ear malformation and a deletion of which the $5^{\prime}$ breakpoint is not determined.

Of note, a large number of deletions and duplications encompassing the whole GPC3 gene and many other genes are found in public databases (DECIPHER, ISCA, and dbVar databases). All GPC3 deletions are expected to be associated with SGBS.

As discussed previously (Vuillaume et al., 2018), six small duplications with a size ranging from 126 kb to 1.035 Mb (nssv584468, nssv13650346, DECIPHER 258050, DECIPHER 326611, nssv1415234, nssv13644225) could lead to a GPC3 loss-offunction by disrupting the reading frame even if features consistent with SGBS were documented in only two of them (DECIPHER 258050, nssv13644225) and no functional molecular analysis was performed.

## $2.3 \mid$ Translocations

Two $X /$ autosomes translocations $t(X, 1)$ and $t(X, 16)$ were the first mutations described as associated with SGBS (Pilia et al., 1996; Punnett, 1994) allowing the recognition of GPC3 as responsible for the disease. These translocations were identified in two unrelated female patients with SGBS. The use of STSs derived from different portions of GPC3 showed that $t(X, 1)$ translocation interrupted the gene in the second intron, whereas $t(X, 16)$ translocation interrupted the gene in the seventh intron, both translocations leading to a probable loss-offunctional GPC3.

## 3 | FUNCTIONAL IMPACT OF GPC3 MUTATIONS

GPC3 mutations are dispersed throughout all the coding regions of the gene with no obvious mutation hotspots. The vast majority of these mutations are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Other types of mutations such as missenses mutations or duplications are less frequent and were also shown to alter GPC3 function when they were functionally characterized (Cottereau et al., 2014; Mateos et al., 2013; Veugelers et al., 2000; Vuillaume et al., 2018). These observations should be taken into account for the interpretation of novel GPC3 variants as a lot of variants are nowadays identified by next-generation sequencing.

## 4 | GENOTYPE/PHENOTYPE CORRELATIONS

Supp. Table S1 summarizes the main clinical features associated with each mutation found in our cohort of 63 patients belonging to 49 unrelated families. Clinical features of 42 of these male cases were previously reviewed by our team (Baujat et al., 2005; Cottereau et al., 2013; Jedraszak et al., 2014; Pénisson-Besnier et al., 2008; Ratbi, Elalaoui, Moizard, Raynaud, \& Sefiani, 2010). We did not find any link between specific clinical symptoms and specific mutations, mutation type or location in GPC3. Our observations are in line with previous studies (Cottereau et al., 2013; Hughes-Benzie et al., 1996; Mariani et al., 2003), which have not found a robust genotype-phenotype correlation in SGBS.
TABLE 3 Microarray results for GPC3 deletions/duplications identified or fine-mapped by array-CGH

Type of rearrangement	Pre- or postnatal diagnosis?	Exons rearranged in GPC3	Min sequence coordinates Hg19	Size (kb)	RefSeq genes in interval?	Array-CGH platform	Reference study
Deletions/duplications identified by array-CGH							
Deletion	Prenatal diagnosis	Exons 1-8	132,363,525-133,429,657	1066	CCDC160, GPC3, GPC4	105K (Agilent)	Weichert et al. (2011)
	Prenatal diagnosis	Deletion including the first 41 nucleotides of exon 2	132,996,180-133,087,198	91	GPC3	180K (Agilent)	Stove et al. (2017)
	Prenatal diagnosis	Exon 3 + duplication downstream GPC3	$\begin{array}{r} 132,887,828-132,972,199 \\ 132,300,487-132,454,025 \end{array}$	84.3	GPC3 GPC4 (exons 3-9), TFDP3	180K (Agilent)	DiMaio et al. (2017)
	Prenatal diagnosis	Exons 3-4	132,834,006-132,986,815	152.8	GPC3	60K (Agilent)	Magini et al. (2016)
	Postnatal diagnosis	Exons 5-6	132,796,480-132,826,558	30	GPC3	105K (Agilent)	Schmidt et al. (2017)
	Prenatal diagnosis	Exons 7-8	131,508,464-132,785,077	1276,5	GPC3, GPC4, TFDP3, USP26, HS6ST2, MBNL3	Affimetrix or Illumina	Ganesamoorthy et al. (2013)
	Postnatal	Exon 8	132,579,767-132,695,101	115,3	GPC3	180K (Agilent)	This study (case No.46)
Duplication	Prenatal diagnosis	Exons 3-6 ${ }^{\text {a }}$	132,161,510-132,986,815	825,3	GPC3, GPC4, TFDP3, USP26	60K (Agilent)	This study (case No.48)
	Postnatal diagnosis	Exons 3-6 + duplication upstream GPC3	$\begin{gathered} 132,742,336-132,933,597 \\ 135,873,188-136,230,169 \end{gathered}$	191357	GPC3 GPR101, SNORD61,	Custom Array (Agilent)	Shimojima et al. (2016)
	Prenatal diagnosis	Exons 6-7 + duplication downstream GPC3	$\begin{aligned} & 132,705,816-132,821,373 \\ & 132,076,106-132,650,019 \end{aligned}$	115,56 573,91	GPC3 GPC4, TFDP3, USP26, HS6ST2	180K (ISCA)	Mujezinovic et al. (2016)
	Prenatal diagnosis	Exon 7	132,717,085-132,769,148	52	GPC3	180K (Agilent)	This study (case No.49)
Deletions fine-mapped by array-CGH							
Deletion	Postnatal diagnosis	Exon 2	133,051,023-133,119,079	68	GPC3	NA	Thomas et al. (2012)
		5'UTR	Not detected	Not detected	GPC3	180K (Agilent)	This study (case No.32)
		Exon 1	Not detected	Not detected	GPC3	180K (Agilent)	This study (case No.33-1)
		Exons 1-2	132,971,999-133,128,643	156.6	GPC3	180K (Agilent)	This study (case No.34)
		Exons 1-6	132,761,685-133,455,720	694	CCDC160, GPC3	180K (Agilent)	This study (case No.35)
		Exons 1-8	131,540,134-133,305,858	1765.7	GPC3, GPC4, TFDP3, USP26, HS6ST2, MBNL3	180K (Agilent)	This study (case No.36)
		Exons 7-8	131,872,895-132,761,744	888.8	GPC3, GPC4, TFDP3, USP26, HS6ST2	180K (Agilent)	This study (case No.41)
		Exons 7-8	132,588,444-132,744,654	156.2	GPC3	180K (Agilent)	This study (case No.42)
		Exon 8	Not detected	Not detected	GPC3	180K (Agilent)	This study (case No.44)
		Exon 8	Not detected	Not detected	GPC3	180K (Agilent)	This study (case No.45)



## 5 | CLINICAL AND DIAGNOSTIC RELEVANCE

The diagnosis of classical SGBS is based on several criteria including typical clinical symptoms, family history consistent with X-linked inheritance and molecular genetic testing for GPC3 mutations. Typical clinical symptoms, especially in males, mostly include overgrowth (macrosomia, macrocephaly, and/or pre-and postnatal overgrowth), typical facial features, hand anomalies, supernumerary nipples, congenital malformations, and tumor predisposition. Variable degree of intellectual disability may be present. The identification of a GPC3 mutation confirms the clinical diagnosis allowing a more appropriate management, and allows a reliable genetic counseling and prenatal diagnosis if desired. In France, two laboratories (Tours and Paris) offer molecular genetic testing for GPC3 mutations since the early 2000's with a combined approach based on PCR, direct sequencing and MLPA analysis. Management of SGBS includes treatment of neonatal hypoglycemia and requires a multidisciplinary approach with pediatric cardiologists, neurologists, orthopedics, and speech therapists. Specific management and follow-up of tumors especially Wilms tumors, liver tumors and gonadoblastoma should be performed in all individuals with SGBS. In families at risk, prenatal diagnosis may be proposed with careful ultrasound follow up in order to detect disproportionate fetal overgrowth often associated with elevated maternal serum alpha-fetoprotein.

## 6 | ANIMAL MODELS

Currently, two glypican-encoding genes have been identified in Drosophila melanogaster, and were shown to play an important role in development. The best-characterized gene is dally (division abnormally delayed), a gene involved in cell division patterning in the visual system. In Dally mutants, cell cycle progression is impaired leading to morphological and developmental defects in several tissues including the eyes, brain, antenna, wings, and genitalia (Nakato, Futch, \& Selleck, 1995). Interestingly, a decrease of dally expression is associated with segment polarity defects similar to the ones caused by the loss of Wingless $(\mathrm{Wg})$ activity (Lin \& Perrimon, 1999; Tsuda et al., 1999). The second glypican gene found in D. melanogaster is dally-like (dly), a gene also implicated in the Wingless mediated patterning of the developing embryo. This gene regulates extracellular growth factor distribution and, in some cases, may block growth factor signaling (Baeg, Lin, Khare, Baumgartner, \& Perrimon, 2001). This gene is also required for the reception of Hedgehog (Hh) signal known to promote embryonic growth (Desbordes \& Sanson, 2003).

In mice targeted deletion of Gpc3 results in some of the typical SGBS abnormalities including developmental overgrowth, perinatal death, renal dysplasia, accessory spleens, impaired lung development, polydactyly, and placentomegaly (Cano-Gauci et al., 1999). This knockout phenotype, in accordance to the human overgrowth phenotype, suggests that GPC3 can act as a negative regulator of cell proliferation. It was first suggested that GPC3 acts as an inhibitor of IGF-II (Pilia et al., 1996) given the critical role of insulin-like-growth factor II
(IGF-II) in the regulation of embryonic growth. However, this hypothesis was ruled out after several experiments showing that GPC3 does not interact with IGF-II. Furthermore, GPC3-null embryos display normal levels of IGF-II without any genetic interaction when they are crossed with various mouse strains lacking critical components of the IGF signaling pathways (Cano-Gauci et al., 1999; Chiao et al., 2002; Song, Shi, \& Filmus, 1997). In humans, the overgrowth phenotype could be due, at least in part, to the hyperactivation of Hedgehog signaling. This latter hypothesis was strongly supported by the fact that Hedgehog signaling was elevated in GPC3-null mice (Capurro et al., 2008) and that GPC3-null embryos display higher levels of Sonic Hedgehog and Indian Hedheog proteins than normal littermates (Capurro et al., 2008; Capurro, Li, \& Filmus, 2009). Moreover, GPC3 knock-out mice also exhibit alterations in the Wnt signaling pathway (Song, Shi, Xiang, \& Filmus, 2005).

## 7 | CONCLUSION AND FUTURE PROSPECTS

In this mutation update, we review the current state of our knowledge on human GPC3 mutations. We have compiled previously reported and novel mutations of GPC3 gene responsible for classical SGBS and collected 86 distinct GPC3 mutations in 120 unrelated families. These mutations ranging from single nucleotide variations to complex genomic rearrangements involve the entire coding region of GPC3. Most of them are unique, inherited and are predicted to result in a lack of functional GPC3. Only 18\% of these mutations occurred de novo. Missense mutations are rare and those which were functionally characterized also impaired GPC3 function. In most cases, mutations were identified by a targeted analysis of GPC3 in patients clinically diagnosed with SGBS. Recently, eleven GPC3 variants were found by high-throughput technologies without a preliminary established clinical diagnosis of SGBS. Ten of these variants are clearly associated with SGBS phenotype. Nine were detected prenatally by chromosomal microarray (DiMaio et al., 2017; Ganesamoorthy et al., 2013; Magini et al., 2016; Mujezinović et al., 2016; Støve et al., 2017; Weichert et al., 2011) or whole exome sequencing (Magini et al., 2016) in fetuses with abnormal ultrasound findings. In these fetuses, clinical features including notably fetal overgrowth, craniofacial abnormalities (DiMaio et al., 2017; Magini et al., 2016; Mujezinović et al., 2016; Støve et al., 2017; Weichert et al., 2011), and congenital diaphragmatic hernia (Ganesamoorthy et al., 2013) were retrospectively in line with SGBS diagnosis. Two other variants were detected postnatally by nextgeneration sequencing. The first variant was found by whole exome sequencing in a patient with an unknown overgrowth syndrome, retrospectively fully compatible with SGBS (Das Bhowmik \& Dalal, 2015). The last variant, a frameshift mutation c.1243del, p.(Val415Trpfs*27), leading to a stop premature codon, was highlighted by next-generation sequencing targeting a panel of genes associated with intellectual disability in a cohort of 996 patients with moderate-to-severe intellectual disability (Grozeva et al., 2015). However, owing to the lack of additional clinical data we were not able to interpret this variant regarding SGBS phenotype, and it was not included in the present review. This illustrates that, with the advent of such large-scale approaches, new

GPC3 rare variants may be revealed incidentally. An accurate evaluation of these variants coupled with a thorough phenotyping will be needed in order to assess their potential involvement in SGBS. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in confirming a clinical diagnosis and, more importantly, in interpreting incidental variants of GPC3 which will be found with next-generation sequencing.

## ACKNOWLEDGMENTS

We sincerely thank the patients and their families for their kind cooperation. We thank all the clinicians who referred patient samples to our laboratory.

## DISCLOSURE STATEMENT

The authors declare no conflict of interest.

## ORCID

Marie-Laure Vuillaume (D) http://orcid.org/0000-0003-1080-972X

## REFERENCES

Agatep, R., Shuman, C., Steele, L., Parkinson, N., Weksberg, R., \& Stockley, T. L. (2014). Paternal germline mosaicism for a GPC3 deletion in X-linked Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 164A(10), 2682-2684.

Baeg, G. H., Lin, X., Khare, N., Baumgartner, S., \& Perrimon, N. (2001). Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development (Cambridge, England), 128(1), 87-94.
Baujat, G., Rio, M., Rossignol, S., Sanlaville, D., Lyonnet, S., Le Merrer, M., ... Cormier-Daire, V. (2005). Clinical and molecular overlap in overgrowth syndromes. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 137C(1), 4-11.

Behmel, A., Plöchl, E., \& Rosenkranz, W. (1984). A new X-linked dysplasia gigantism syndrome: Identical with the Simpson dysplasia syndrome? Human Genetics, 67(4), 409-413.
Cano-Gauci, D. F., Song, H. H., Yang, H., McKerlie, C., Choo, B., Shi, W., ... Filmus, J. (1999). Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. The Journal of Cell Biology, 146(1), 255264.

Capurro, M. I., Li, F., \& Filmus, J. (2009). Overgrowth of a mouse model of Simpson-Golabi-Behmel syndrome is partly mediated by Indian hedgehog. EMBO Reports, 10(8), 901-907.
Capurro, M. I., Xu, P., Shi, W., Li, F., Jia, A., \& Filmus, J. (2008). Glypican3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Developmental Cell, 14(5), 700711.

Chiao, E., Fisher, P., Crisponi, L., Deiana, M., Dragatsis, I., Schlessinger, D., ... Efstratiadis, A. (2002). Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. Developmental Biology, 243(1), 185-206.
Cottereau, E., Moizard, M.-P., David, A., Raynaud, M., Marmin, N., \& Toutain, A. (2014). Duplication of exon 2 of the GPC3 gene in a case of Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 164A(1), 282-284.

Cottereau, E., Mortemousque, I., Moizard, M.-P., Bürglen, L., Lacombe, D., Gilbert-Dussardier, B., ... Toutain, A. (2013). Phenotypic spectrum of Simpson-Golabi-Behmel syndrome in a series of 42 cases with a mutation in GPC3 and review of the literature. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 163C(2), 92105.

Das Bhowmik, A., \& Dalal, A. (2015). Whole exome sequencing identifies a novel frameshift mutation in GPC3 gene in a patient with overgrowth syndrome. Gene, 572(2), 303-306.
Day, R., \& Fryer, A. (2005). Index finger abnormalities in Simpson-GolabiBehmel syndrome. Clinical Dysmorphology, 14(1), 35-36.
Desbordes, S. C., \& Sanson, B. (2003). The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development (Cambridge, England), 130(25), 6245-6255.

DiMaio, M. S., Yang, H., Mahoney, M. J., McGrath, J., \& Li, P. (2017). Familial GPC3 and GPC4-TFDP3 deletions at Xq26 associated with Simpson-Golabi-Behmel syndrome. Meta Gene, 11, 147-151.
Filmus, J. (2001). Glypicans in growth control and cancer. Glycobiology, 11(3), 19R-23R.
Filmus, J., \& Capurro, M. (2013). Glypican-3: A marker and a therapeutic target in hepatocellular carcinoma. The FEBS Journal, 280(10), 2471-2476.
Filmus, J., Capurro, M., \& Rast, J. (2008). Glypicans. Genome Biology, 9(5), 224.

Ganesamoorthy, D., Bruno, D., McGillivray, G., Norris, F., White, S., Adroub, S., ... Slater, H. (2013). Meeting the challenge of interpreting highresolution single nucleotide polymorphism array data in prenatal diagnosis: Does increased diagnostic power outweigh the dilemma of rare variants? BJOG: An International Journal of Obstetrics \& Gynaecology, 120(5), 594-606.
Garavelli, L., Gargano, G., Simonte, G., Rosato, S., Wischmeijer, A., Melli, N., ... Neri, G. (2012). Simpson-Golabi-Behmel syndrome type 1 in a 27week macrosomic preterm newborn: The diagnostic value of rib malformations and index nail and finger hypoplasia. American Journal of Medical Genetics. Part A, 158A(9), 2245-2249.
Gertsch, E., Kirmani, S., Ackerman, M. J., \& Babovic-Vuksanovic, D. (2010). Transient QT interval prolongation in an infant with Simpson-GolabiBehmel syndrome. American Journal of Medical Genetics. Part A, 152A(9), 2379-2382.

Golabi, M., Leung, A., \& Lopez, C. (2011). Simpson-Golabi-Behmel Syndrome Type 1. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. Bean, \& ... K. Stephens (Eds.), GeneReviews(®)). Seattle (WA): University of Washington, Seattle. Consulté à l'adresse.
Golabi, M., \& Rosen, L. (1984). A new X-linked mental retardationovergrowth syndrome. American Journal of Medical Genetics, 17(1), 345358.

Grozeva, D., Carss, K., Spasic-Boskovic, O., Tejada, M.-I., Gecz, J., Shaw, M., ... Raymond, F. L. (2015). Targeted next-generation sequencing analysis of 1,000 individuals with intellectual disability. Human Mutation, 36(12), 1197-1204.
Gurrieri, F., Pomponi, M. G., Pietrobono, R., Lucci-Cordisco, E., Silvestri, E., Storniello, G., \& Neri, G. (2011). The Simpson-Golabi-Behmel syndrome: A clinical case and a detective story. American Journal of Medical Genetics. Part A, 155A(1), 145-148.
Halayem, S., Hamza, M., Maazoul, F., Ben Turkia, H., Touati, M., Tebib, N., ... Bouden, A. (2016). Distinctive findings in a boy with Simpson-GolabiBehmel syndrome. American Journal of Medical Genetics. Part A, 170A(4), 1035-1039.
Hughes-Benzie, R. M., Pilia, G., Xuan, J. Y., Hunter, A. G., Chen, E., Golabi, M., ... MacKenzie, A. E. (1996). Simpson-Golabi-Behmel syndrome: Genotype/phenotype analysis of 18 affected males from 7 unrelated families. American Journal of Medical Genetics, 66(2), 227-234.

Jedraszak, G., Girard, M., Mellos, A., Djeddi, D.-D., Chardot, C., Vanrenterghem, A., ... Demeer, B. (2014). A patient with Simpson-GolabiBehmel syndrome, biliary cirrhosis and successful liver transplantation American Journal of Medical Genetics. Part A, 164A(3), 774-777.

Kehrer, C., Hoischen, A., Menkhaus, R., Schwab, E., Müller, A., Kim, S., ... Gembruch, U. (2016). Whole exome sequencing and array-based molecular karyotyping as aids to prenatal diagnosis in fetuses with suspected Simpson-Golabi-Behmel syndrome. Prenatal Diagnosis, 36(10), 961-

Kosaki, R., Takenouchi, T., Takeda, N., Kagami, M., Nakabayashi, K., Hata, K., \& Kosaki, K. (2014). Somatic CTNNB1 mutation in hepatoblastoma from a patient with Simpson-Golabi-Behmel syndrome and germline GPC3 mutation. American Journal of Medical Genetics. Part A, 164A(4), 993997.

Li, M., Shuman, C., Fei, Y. L., Cutiongco, E., Bender, H. A., Stevens, C., ... Weksberg, R. (2001). GPC3 mutation analysis in a spectrum of patients with overgrowth expands the phenotype of Simpson-GolabiBehmel syndrome. American Journal of Medical Genetics, 102(2), 161168

Lin, X., \& Perrimon, N. (1999). Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature, 400(6741), 281284.

Lindsay, S., Ireland, M., O'Brien, O., Clayton-Smith, J., Hurst, J. A., Mann, J., ... Pilia, G. (1997). Large scale deletions in the GPC3 gene may account for a minority of cases of Simpson-Golabi-Behmel syndrome. Journal of Medical Genetics, 34(6), 480-483

Magini, P., Palombo, F., Boito, S., Lanzoni, G., Mongelli, P., Rizzuti, T., ... Lalatta, F. (2016). Prenatal diagnosis of Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 170(12), 32583264.

Mariani, S., Iughetti, L., Bertorelli, R., Coviello, D., Pellegrini, M., Forabosco, A., \& Bernasconi, S. (2003). Genotype/phenotype correlations of males affected by Simpson-Golabi-Behmel syndrome with GPC3 gene mutations: Patient report and review of the literature. Journal of Pediatric Endocrinology \& Metabolism, 16(2), 225-232.
Mateos, M. E., Beyer, K., López-Laso, E., Siles, J. L., Pérez-Navero, J. L., Peña, M. J., ... Matas, J. (2013). Simpson-Golabi-Behmel syndrome type 1 and hepatoblastoma in a patient with a novel exon 2-4 duplication of the GPC3 gene. American Journal of Medical Genetics. Part A, 161A(5), 10911095.

Mujezinović, F., Krgović, D., Blatnik, A., Zagradišnik, B., Vipotnik, T. V., Golec, T., ... Vokač, N. K. (2016). Simpson-Golabi-Behmel syndrome: A prenatal diagnosis in a foetus with GPC3 and GPC4 gene microduplications Clinical Genetics, 90(1), 99-101

Nakato, H., Futch, T. A., \& Selleck, S. B. (1995). The division abnormally delayed (dally) gene: A putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development (Cambridge, England), 121(11), 3687-3702.

Neri, G., Gurrieri, F., Zanni, G., \& Lin, A. (1998). Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics, 79(4), 279-283

Ochiai, D., Ohashi, H., Hisazumi-Watanabe, H., Sato, Y., Yakubo, K., \& Fukuiya, T. (2013). Simpson-Golabi-Behmel syndrome diagnosed by postmortem magnetic resonance imaging, restricted autopsy, and molecular genetics: A case report. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 171(2), 388-389.

Okamoto, N., Yagi, M., Imura, K., \& Wada, Y. (1999). A clinical and molecular study of a patient with Simpson-Golabi-Behmel syndrome. Journal of Human Genetics, 44(5), 327-329.

Pénisson-Besnier, I., Lebouvier, T., Moizard, M.-P., Ferré, M., Barth, M., Marc, G., ... Bonneau, D. (2008). Carotid artery dissection in an adult with the

Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 146A(4), 464-467.

Pilia, G., Hughes-Benzie, R. M., MacKenzie, A., Baybayan, P., Chen, E. Y., Huber, R., ... Schlessinger, D. (1996). Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nature Genetics, 12(3), 241-247.

Punnett, H. H. (1994). Simpson-Golabi-Behmel syndrome (SGBS) in a female with an X-autosome translocation. American Journal of Medical Genetics, 50(4), 391-393.

Ratbi, I., Elalaoui, S. C., Moizard, M.-P., Raynaud, M., \& Sefiani, A. (2010). Novel nonsense mutation of GPC3 gene in a patient with Simpson-Golabi-Behmel syndrome. The Turkish Journal of Pediatrics, 52(5), 525528.

Rodríguez-Criado, G., Magano, L., Segovia, M., Gurrieri, F., Neri, G., González-Meneses, A., ... Lapunzina, P. (2005). Clinical and molecular studies on two further families with Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 138A(3), 272277.

Romanelli, V., Arroyo, I., Rodriguez, J. I., Magano, L., Arias, P., Incera, I., ... Lapunzina, P. (2007). Germinal mosaicism in Simpson-Golabi-Behmel syndrome. Clinical Genetics, 72(4), 384-386.

Sakazume, S., Okamoto, N., Yamamoto, T., Kurosawa, K., Numabe, H., Ohashi, Y., ... Ohashi, H. (2007). GPC3 mutations in seven patients with Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 143A(15), 1703-1707.

Schmidt, J., Hollstein, R., Kaiser, F. J., \& Gillessen-Kaesbach, G. (2017). Molecular analysis of a novel intragenic deletion in GPC3 in three cousins with Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A.,

Shi, W., \& Filmus, J. (2009). A patient with the Simpson-Golabi-Behmel syndrome displays a loss-of-function point mutation in GPC3 that inhibits the attachment of this proteoglycan to the cell surface. American Journal of Medical Genetics. Part A, 149A(3), 552-554.

Shimojima, K., Ondo, Y., Nishi, E., Mizuno, S., Ito, M., Ioi, A., ... Yamamoto, T. (2016). Loss-of-function mutations and global rearrangements in GPC3 in patients with Simpson-Golabi-Behmel syndrome. Human Genome Variation, 3, 16033. https://doi.org/10.1038/hgv.2016.33

Simpson, J. L., Landey, S., New, M., \& German, J. (1975). A previously unrecognized X-linked syndrome of dysmorphia. Birth Defects Original Article Series, 11(2), 18-24.

Song, H. H., \& Filmus, J. (2002). The role of glypicans in mammalian development. Biochimica Et Biophysica Acta, 1573(3), 241-246.

Song, H. H., Shi, W., \& Filmus, J. (1997). OCI-5/rat glypican-3 binds to fibroblast growth factor-2 but not to insulin-like growth factor-2. The Journal of Biological Chemistry, 272(12), 7574-7577.

Song, H. H., Shi, W., Xiang, Y.-Y., \& Filmus, J. (2005). The loss of glypican-3 induces alterations in Wnt signaling. The Journal of Biological Chemistry, 280(3), 2116-2125.

Spencer, C., Fieggen, K., Vorster, A., \& Beighton, P. (2016). A clinical and molecular investigation of two South African families with Simpson-Golabi-Behmel syndrome. South African Medical Journal = SuidAfrikaanse Tydskrif Vir Geneeskunde, 106(3), 272-275

Støve, H. K., Becher, N., Gjørup, V., Ramsing, M., Vogel, I., \& Vestergaard, E. M. (2017). First reported case of Simpson-Golabi-Behmel syndrome in a female fetus diagnosed prenatally with chromosomal microarray. Clinical Case Reports, 5(5), 608-612.

Thomas, M., Enciso, V., Stratton, R., Shah, S., Winder, T., Tayeh, M., \& Roeder, E. (2012). Metastatic medulloblastoma in an adolescent with Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 158A(10), 2534-2536.

Tsuda, M., Kamimura, K., Nakato, H., Archer, M., Staatz, W., Fox, B., ... Selleck, S. B. (1999). The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature, 400(6741), 276-280.
Vaisfeld, A., Pomponi, M. G., Pietrobono, R., Tabolacci, E., \& Neri, G. (2017). Simpson-Golabi-Behmel syndrome in a female: A case report and an unsolved issue. American Journal of Medical Genetics. Part A, 173(1), 285288.

Veugelers, M., Cat, B. D., Muyldermans, S. Y., Reekmans, G., Delande, N., Frints, S., ... David, G. (2000). Mutational analysis of the GPC3/GPC4 glypican gene cluster on Xq26 in patients with Simpson-Golabi-Behmel syndrome: Identification of loss-of-function mutations in the GPC3 gene. Human Molecular Genetics, 9(9), 13211328.

Veugelers, M., Vermeesch, J., Watanabe, K., Yamaguchi, Y., Marynen, P., \& David, G. (1998). GPC4, the gene for human K-glypican, flanks GPC3 on xq26: Deletion of the GPC3-GPC4 gene cluster in one family with Simpson-Golabi-Behmel syndrome. Genomics, 53(1), 1-11.
Villarreal, D. D., Villarreal, H., Paez, A. M., Peppas, D., Lynch, J., Roeder, E., \& Powers, G. C. (2013). A patient with a unique frameshift mutation in GPC3, causing Simpson-Golabi-Behmel syndrome, presenting with craniosynostosis, penoscrotal hypospadias, and a large prostatic utricle. American Journal of Medical Genetics. Part A, 161A(12), 31213125.

Vuillaume, M.-L., Moizard, M.-P., Hammouche, E., Delrue, M.-A., Perrin, L., Maftei, C., ... Toutain, A. (2018). Are all Xq26.2 duplications overlapping GPC3 on array-CGH a cause of Simpson-Golabi-Behmel syndrome? When do we need transcript analysis? Clinical Genetics, https://doi.org/10.1111/cge. 13151
Waterson, J., Stockley, T. L., Segal, S., \& Golabi, M. (2010). Novel duplication in glypican-4 as an apparent cause of Simpson-Golabi-Behmel syndrome. American Journal of Medical Genetics. Part A, 152A(12), 31793181.

Weichert, J., Schröer, A., Amari, F., Siebert, R., Caliebe, A., Nagel, I., ... Hellenbroich, Y. (2011). A 1 Mb -sized microdeletion Xq26.2 encompassing the GPC3 gene in a fetus with Simpson-Golabi-Behmel syndrome Report, antenatal findings and review. European Journal of Medical Genetics, 54(3), 343-347.

Xuan, J. Y., Hughes-Benzie, R. M., \& MacKenzie, A. E. (1999). A small interstitial deletion in the GPC3 gene causes Simpson-Golabi-Behmel syndrome in a Dutch-Canadian family. Journal of Medical Genetics, 36(1), 5758.

Yano, S., Baskin, B., Bagheri, A., Watanabe, Y., Moseley, K., Nishimura, A., ... Ray, P. N. (2011). Familial Simpson-Golabi-Behmel syndrome: Studies of X-chromosome inactivation and clinical phenotypes in two female individuals with GPC3 mutations. Clinical Genetics, 80(5), 466471.

Young, E. L., Wishnow, R., \& Nigro, M. A. (2006). Expanding the clinical picture of Simpson-Golabi-Behmel syndrome. Pediatric Neurology, 34(2), 139-142.

## SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Vuillaume M-L, Moizard M-P, Rossignol S, et al. Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature. Human Mutation. 2018;39:790-805. https://doi.org/10.1002/ humu. 23428

