118 research outputs found

    3D thermomechanical simulation of the secondary cooling zone of steel continuous casting

    No full text
    International audienceThis paper addresses the simulation of steel continuous casting (CC) using two non steady-state approaches: a slice method and a global method. Both methods can take into account the curvature of the CC machine. We describe the implementation of the two methods. We present the resolution of the thermo mechanical problem of the process. The two methods are compared in the case of CC of thick products

    Investigating the Influence of Geometrical Traits on Light Interception Efficiency of Apple Trees: a Modelling Study with MAppleT

    Get PDF
    UMR AGAP - équipe AFEF - Architecture et fonctionnement des espèces fruitièresInternational audienceMAppleT is an in silico functional-structural plant model that has been built for simulating architectural development of apple trees. It has the capability of representing tree growth within a virtual space where the development of individual organs depends on geometrical traits. The purpose of this research is to investigate the influence of apple trees x architectural variability on their light interception efficiency. The STAR, namely the silhouette to total area ratio, of leaves, was chosen to evaluate the level of such efficiency. The strategy is to integrate MAppleT with the light interception model provided by the fractalysis module of the VPlants software library. Target values of four major traits (internode length, leaf area, branching angle and top shoot diameter), are varied in range previously observed in a segregating population of apple hybrids. A sensitivity analysis based on polynomial and generalised additive models was performed for highlighting the most influential trait on light interception and suggesting the optimal combination(s) of traits leading to the highest STAR. The contribution of stochastic processes that pilot tree topology in MAppleT is also investigated in the sensitivity analysis. This study not only provides a time- and resource-saving alternative for data collection, but also sets a methodology for ideotype definition and further genetic improvement of apple trees

    Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes

    Get PDF
    Despite previous reports on the genotypic variation of architectural and functional traits in fruit trees, phenotyping large populations in the field remains challenging. In this study, we used high-throughput phenotyping methods on an apple tree core-collection (1000 individuals) grown under contrasted watering regimes. First, architectural phenotyping was achieved using T-LiDAR scans for estimating convex and alpha hull volumes and the silhouette to total leaf area ratio (STAR). Second, a semi-empirical index (IPL) was computed from chlorophyll fluorescence measurements, as a proxy for leaf photosynthesis. Last, thermal infrared and multispectral airborne imaging was used for computing canopy temperature variations, water deficit, and vegetation indices. All traits estimated by these methods were compared to low-throughput in planta measurements. Vegetation indices and alpha hull volumes were significantly correlated with tree leaf area and trunk cross sectional area, while IPL values showed strong correlations with photosynthesis measurements collected on an independent leaf dataset. By contrast, correlations between stomatal conductance and canopy temperature estimated from airborne images were lower, emphasizing discrepancies across measurement scales. High heritability values were obtained for almost all the traits except leaf photosynthesis, likely due to large intra-tree variation. Genotypic means were used in a clustering procedure that defined six classes of architectural and functional combinations. Differences between groups showed several combinations between architectural and functional traits, suggesting independent genetic controls. This study demonstrates the feasibility and relevance of combining multi-scale high-throughput methods and paves the way to explore the genetic bases of architectural and functional variations in woody crops in field conditions

    Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells

    Get PDF
    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a mortal and highly contagious disease in common and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus. In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry

    Exploring carbon allocation with a multi-scale model: the case of apple

    Get PDF
    UMR AGAP - équipe AFEF - Architecture et fonctionnement des espèces fruitièresUnderstanding the allocation of carbohydrates among organs is necessary to predict plant growth in relation to climatic conditions and agronomic practices. Despite the large number of studies on the subject of carbon allocation, no clear consensus exists on (i) the most appropriate topological scale (organ, metamer, compartment...) to represent this process on complex plant structures, and (ii) the importance of distances between organs in carbon transport. In this study, we implemented a generic source-sink based carbon allocation model, following the equation of the SIMWAL model, that takes into account the distances between sources and sinks, the sink strength and the availability of carbohydrates from photosynthesis. Our model makes use of multi-scale tree graph (MTG) to represent geometry and topology of a tree structure at different scales. Starting from the description of a plant at a given scale (e.g. metamer and growing unit scales), we defined additional grouping criteria (fruiting branches and main axis) that were used to represent the plant structure, and the process of carbon allocation at different spatial resolutions. Generic functions to determine the biomass and carbon demand of the individual organs described in an MTG were implemented and calibrated for apple trees (Fuji variety) by means of age and organ type dependent allometric equations and maximum potential Relative Growth Rate curves (RGR) obtained in a field experiment. Photosynthesis for individual leaves of the input MTG was estimated by means of a radiative model (RATP). The model was then applied to architectural mock-ups in the MTG format produced by the MappleT model, representing trees with high and low fruit loads. Simulations on simplified plant structures qualitatively showed the influence of the scale of representation and of the distance parameter on the predicted carbon allocation. In order to test assumptions regarding the effect of distance, the source-sink behavior and the suitability of the alternative scales of representation for predicting carbon allocation, the variability and spatial distribution of the simulated RGR were compared to field observations. Finally, a benchmarking was performed to compare the computational efficiency of the model when running at different scales. The presented multiscale model provides a framework to re-interpret the plant topology in order to test the influence of some assumptions at the basis of the carbon allocation process, such as branch autonomy or the effect of distance. It is also a mean to investigate the trade-offs between the detail at which a plant is described, and the accuracy and computational efficiency in predicting carbon allocation. The present work was developed on the OpenAlea platform, and will provide existing Functional Structural Plant Models with a new generic model to simulate carbon allocation in plants

    Modélisation thermomécanique tridimensionnelle par éléments finis de la coulée continue d'aciers

    No full text
    In this work, we introduce a thermo-mechanical model of the steel continuous casting process, in three dimensions. With our approach, it is possible to obtain thermo-mechanical steady-state solution of the process, for the whole product. The thermo-mechanical history of the product can thus be deduced, by viewing the stress and temperature fields, for instance. One of the expected results deals with the bulging between rolls, which is known to give birth to segregation phenomena. We base our study on the global non steady-state strategy using a Lagrangian approach. The flow of matter in the studied domain is simulated through one injection tool located in the upper surface of the domain. The lower face is supposed to be driven down at the starting block velocity. However, the mesh displacement at the upper surface is imposed to zero and consequently the mesh volume enlarges continuously. The evolution of the mesh - relocation of nodes, creation of new nodes - is treated by a specific generation mesh technique. Concerning the model, non-steady thermo-mechanical conservation equations are solved. The approach to the mechanical problem is of equivalent one-phase type (velocity and pressure are the unknowns). In our approach, natural convection and macrosegregation are neglected but thermal dilatation and solidification shrinkage are accounted for. Solid, mushy and liquid states obey respectively to elastoviscoplastic, viscoplastic and Newtonian behaviours. The rheology of the solid state is calculated thanks to laws from the literature. These developments have been validated on industrial cases, showing a good qualitative and quantitative agreement.Nous avons proposé une modélisation thermomécanique de la coulée continue d'acier en trois dimensions. Notre approche permet d'obtenir la solution thermomécanique stationnaire du procédé, sur toute la machine. Il est alors possible de déduire l'histoire thermique et mécanique du produit en visualisant les cartes de contraintes ou de température. Un des résultats attendus de notre étude concerne les déflections entre les rouleaux qui traduisent le gonflement, à l'origine des ségrégations. Nous avons basé notre étude sur la stratégie globale instationnaire, en adoptant une approche purement lagrangienne. Nous simulons l'apport continuel de matière, grâce à l'introduction d'un outil d'injection situé sur la face supérieure du domaine. La face inférieure du domaine admet la cinématique de l'outil de guidage du procédé. Ainsi, le maillage augmente constamment selon un chemin délimité par les rouleaux. L'évolution du maillage -création de nouveaux noeuds- est gérée de manière locale par une technique de recollement de maillages. D'un point de vue modélisation, nous résolvons les équations instationnaires de conservation de l'énergie, de la matière et de la quantité de mouvement. Le problème mécanique est abordé selon une approche de type milieu monophasé équivalent; nous négligeons les phénomènes de convection naturelle et de macroségrégation, mais les phénomènes de dilatation thermique et de retrait à la solidification sont pris en compte. La zone solide est supposée obéir à un comportement élasto-viscoplastique, dont la rhéologie est donnée par les lois de la littérature. Les zones pâteuse et liquide sont supposées obéir respectivement à un comportement viscoplastique et newtonien. Nous avons validé, avec succès, notre approche sur plusieurs cas et nous l'avons appliqué à deux machine de coulée industrielles
    • …
    corecore