6 research outputs found

    Impact of analytical treatment interruption on burden and diversification of HIV peripheral reservoir: a pilot study

    Get PDF
    Background: If analytical antiretroviral-treatment (ART) interruption (ATI) might significantly impact quantitative or qualitative peripheral-total HIV-DNA is still debated. Methods: Six chronically HIV-1 infected patients enrolled in APACHE-study were analysed for peripheral-total HIV-DNA and residual viremia, major-resistance-mutations (MRMs) and C2-V3-C3 evolution at pre-ATI (T1), during ATI (T2) and at achievement of virological success after ART-resumption (post-ATI, T3). These data were obtained at three comparable time-points in five chronically HIV-1 infected patients on suppressive ART for ≥1 year, enrolled in MODAt-study. Results: At T1, APACHE and MODAt individuals had similar peripheral-total HIV-DNA and residual viremia (p = 0.792 and 0.662, respectively), and no significant changes for these parameters were observed between T1 and T3 in both groups. At T1, 4/6 APACHE and 2/5 MODAt carried HIV-DNA MRMs. MRMs disappeared at T3 in 3/4 APACHE. All disappearing MRMs were characterized by T1 intra-patient prevalence <80%, and mainly occurred in APOBEC3-related sites. All MRMs persisted over-time in the 2 MODAt. C2-V3-C3 genetic-distance significantly changed from T1 to T3 in APACHE individuals (+0.36[0.11-0.41], p = 0.04), while no significant changes were found in MODAt. Accordingly, maximum likelihood trees (bootstrap > 70%) and genealogical sorting indices (GSI > 0.50 with p-value < 0.05) showed that T1 C2-V3-C3 DNA sequences were distinct from T2 and T3 viruses in 4/6 APACHE. Virus populations at all three time-points were highly interspersed in MODAt. Conclusions: This pilot study indicates that short ATI does not alter peripheral-total HIV-DNA burden and residual viremia, but in some cases could cause a genetic diversification of peripheral viral reservoir in term of both MRMs rearrangement and viral evolution

    A proof-of-concept study on the genomic evolution of Sars-Cov-2 in molnupiravir-treated, paxlovid-treated and drug-naïve patients

    Get PDF
    Little is known about SARS-CoV-2 evolution under Molnupiravir and Paxlovid, the only antivirals approved for COVID-19 treatment. By investigating SARS-CoV-2 variability in 8 Molnupiravir-treated, 7 Paxlovid-treated and 5 drug-naive individuals at 4 time-points (Days 0-2-5-7), a higher genetic distance is found under Molnupiravir pressure compared to Paxlovid and no-drug pressure (nucleotide-substitutions/site mean & PLUSMN;Standard error: 18.7 x 10(-4) & PLUSMN; 2.1 x 10(-4) vs. 3.3 x 10(-4) & PLUSMN; 0.8 x 10(-4) vs. 3.1 x 10(-4) & PLUSMN; 0.8 x 10(-4), P = 0.0003), peaking between Day 2 and 5. Molnupiravir drives the emergence of more G-A and C-T transitions than other mutations (P = 0.031). SARS-CoV-2 selective evolution under Molnupiravir pressure does not differ from that under Paxlovid or no-drug pressure, except for orf8 (dN > dS, P = 0.001); few amino acid mutations are enriched at specific sites. No RNA-dependent RNA polymerase (RdRp) or main proteases (Mpro) mutations conferring resistance to Molnupiravir or Paxlovid are found. This proof-of-concept study defines the SARS-CoV-2 within-host evolution during antiviral treatment, confirming higher in vivo variability induced by Molnupiravir compared to Paxlovid and drug-naive, albeit not resulting in apparent mutation selection

    Hot spot mapping of protein surfaces with TEMPOL: Bovine pancreatic RNase A as a model system

    No full text
    TEMPOL spin-label has been used to identify surface exposure of protein nuclei from NMR analysis of the induced paramagnetic relaxation enhancements (PRE). The absence of linear dependence between atom depths and observed PRE reveals that specific mechanisms drive the approach of the paramagnet to the protein surface. RNase A represents a unique protein system to explore the fine details of the information offered by TEMPOL induced PRE, due to the abundance of previous results, obtained in solution and in the crystal, dealing with surface dynamics behavior of this protein. MD simulations in explicit solvent have been performed, also in the presence of TEMPOL, in order to delineate the role of intermolecular hydrogen bonds (HB) on PRE extents. Comparison of our results with the ones obtained from multiple solvent crystal structure (MSCS) studies yields information on the specificities that these two techniques have for characterizing protein-ligand interactions, a fundamental step in the development of reliable surface druggability predictors
    corecore