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Abstract: Background: If analytical antiretroviral-treatment (ART) interruption (ATI) might signifi-
cantly impact quantitative or qualitative peripheral-total HIV-DNA is still debated. Methods: Six
chronically HIV-1 infected patients enrolled in APACHE-study were analysed for peripheral-total
HIV-DNA and residual viremia, major-resistance-mutations (MRMs) and C2-V3-C3 evolution at pre-
ATI (T1), during ATI (T2) and at achievement of virological success after ART-resumption (post-ATI,
T3). These data were obtained at three comparable time-points in five chronically HIV-1 infected
patients on suppressive ART for ≥1 year, enrolled in MODAt-study. Results: At T1, APACHE and
MODAt individuals had similar peripheral-total HIV-DNA and residual viremia (p = 0.792 and 0.662,
respectively), and no significant changes for these parameters were observed between T1 and T3 in
both groups. At T1, 4/6 APACHE and 2/5 MODAt carried HIV-DNA MRMs. MRMs disappeared at
T3 in 3/4 APACHE. All disappearing MRMs were characterized by T1 intra-patient prevalence <80%,
and mainly occurred in APOBEC3-related sites. All MRMs persisted over-time in the 2 MODAt. C2-
V3-C3 genetic-distance significantly changed from T1 to T3 in APACHE individuals (+0.36[0.11–0.41],
p = 0.04), while no significant changes were found in MODAt. Accordingly, maximum likelihood
trees (bootstrap > 70%) and genealogical sorting indices (GSI > 0.50 with p-value < 0.05) showed
that T1 C2-V3-C3 DNA sequences were distinct from T2 and T3 viruses in 4/6 APACHE. Virus
populations at all three time-points were highly interspersed in MODAt. Conclusions: This pilot
study indicates that short ATI does not alter peripheral-total HIV-DNA burden and residual viremia,
but in some cases could cause a genetic diversification of peripheral viral reservoir in term of both
MRMs rearrangement and viral evolution.

Keywords: HIV-1; HIV-1 diversification; analytical treatment interruption; HIV-1 reservoir

1. Introduction

Antiretroviral therapy (ART) can suppress HIV-1 viremia below the detection limit
in clinical assays tests and therefore is able to drastically reduce morbidity and mortality
derived from HIV-1 infection [1,2]. Despite the success of ART, HIV cure cannot be achieved
by antiretroviral therapy due to the persistence of proviral HIV-DNA in target cells. The
HIV-DNA represents a latent reservoir that demonstrates remarkable stability [3,4]. Several
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studies reported that after ART initiation HIV-DNA burden drastically decreases during
the first year of treatment, but afterwards the decay rate remains slow, and the HIV-DNA
levels remain almost stable for a long-time [5–7].

To date multiple strategies aimed at preventing and/or contain the establishment and
size of persistent HIV reservoirs have been applied [8–10]. Examples of such strategies
include early initiation of ART, eliminating infected CD4+T-cells with therapeutic agents
that target the virus and/or infected cells, and harnessing anti-HIV immune-responses
using therapeutic vaccines or immunotherapies [11,12]. Early treatment can contribute
to the reduction of residual viral replication and HIV reservoir size [13], can limit viral
diversity, preserve innate immunity and lymphocyte functions [14–16], and contributing to
HIV post-treatment control [17].

Recently, analytical treatment interruptions (ATI) or treatment simplification strategies
have become a focus of investigations as innovative approaches to the long-term manage-
ment of HIV disease. ATIs have been used in different studies towards an HIV cure, as in
acute, primary and chronic infection [18,19] and in immune-based interventions [11,20].
The Visconti cohort clearly showed that early and prolonged cART may allow some indi-
viduals to gain long-term infection control, even during treatment interruption, paving the
way for a drug free longterm control [15].

Current challenges with ATI include identifying an appropriate timeframe for length
of interruptions and identifying HIV patient populations able to spontaneously control
viral replication once antiretroviral drug therapy is withdrawn.

Nonetheless, concerns remain about the effect of ATI on the HIV-1 reservoir, and on
the existence of reliable viral markers able to predict reservoir alterations during/post-
ATI [21–25].

Recent data suggest that even in patients characterized by long period of HIV viral-
load suppression and low viral reservoir (APACHE cohort), early and consistent viral-
rebound can be observed during ATI [26]. Using samples previously collected for the
APACHE study [26], we performed quantitative and qualitative analyses on peripheral
HIV reservoir, to determine the effect of treatment interruption and transient viremia on
the size and composition of this HIV compartment. All these patients fulfilled the criteria
established by Julg et al. [27], for the inclusion in ATI protocols.

2. Materials and Methods
2.1. Study Population

This pilot study includes six chronically HIV-1 infected patients, enrolled in APACHE
study (NCT03198325, experimental-group), who underwent ATI. These patients had HIV-
RNA <50 copies/mL for≥10 years, no viral blip for≥5 years, CD4+T-cells >500 cells/mm3,
HIV-DNA <100 copies/106 PBMCs by Real-Time PCR (ABI-Prism 7900, Applied Biosystem,
Foster City, CA, USA) and without comorbidities or AIDS-defining diseases. No patient
initiated antiretroviral treatment during acute HIV-1 infection. We analyzed samples
for peripheral-total HIV-DNA, residual viremia and HIV variability at three time-points:
before ATI (pre-ATI, T1), at viral-rebound (VR) during ATI (defined as occurrence of two
consecutive HIV-RNA >50 copies/mL on cART interruption, measured 2 weeks apart,
T2) and at achievement of undetectable viral-load after ART resumption (post-ATI, T3;
Figure S1A).

The same data were obtained at three comparable time-points (at baseline [T1],
12 weeks after T1 [T2], 12 weeks after T2 [T3]) in five chronically HIV-1 infected patients
treated with a triple-therapy (triple-ART) and on stable virological suppression for >1 year,
enrolled in the MODAT study (NCT01511809, control-group) [28] (Figure S1B).

Antiretroviral treatment of APACHE and MODAt individuals did not include drugs
belonging to integrase inhibitor class (INI).

Peripheral blood mononuclear cells (PBMCs) aliquots and plasma samples were
collected at all time-points.
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For all patients, demographic and clinical information such as age, gender, CD4+T
and CD8+T cell count were retrieved and stored in an anonymous database.

Ethical approval for the APACHE and the MODAt studies were obtained from the
Ethical Committee of the San Raffaele (protocol number and approval date: 31/OSR on
17 May 2016 and 332/DG on 26 October 2010, respectively). Signed informed consent was
obtained by all participants. The APACHE and the MODAt studies were conducted in
accordance with the Declaration of Helsinki Ethical Principles and Good Clinical Practices.

2.2. Total HIV-DNA and Residual Viremia Quantification

Total HIV-DNA was quantified from a pellet of 3 × 106 PBMCs by means of the
QX200™ Droplet Digital™PCR System (ddPCR, Bio-Rad, Hercules, CA, USA) using home-
made protocol targeting the LTR-5′ region [6]. Total HIV-DNA (copies/106 PBMCs) was
then normalized into number copies/106 CD4+T-cells. Residual viremia was quantified
from 2 mL of plasma through ddPCR using a home-made protocol targeting Integrase
region [6].

2.3. Viral Sequencing

Genomic DNA was extracted from a pellet of 3 × 106 PBMCs using DNeasy Blood &
Tissue kit (Qiagen, Hilden, Germany). Plasma HIV-RNA was extracted using QIamp Viral
RNA mini kit (Qiagen). Deep sequencing of POL (HXB2-pol nucleotides:170–1415) and
C2-V3-C3 (HXB2-env nucleotides:805–1224) was performed from PBMCs and plasma on
MiSeq platform (Illumina, San Diego, CA, USA). Briefly, HIV-DNA and HIV-RNA were
amplified by PCR with region-specific primers (Table S1). Afterwards, five amplicons
were obtained for POL and one amplicon for C2-V3-C3 by a modified protocol using
AmpliTaq-Gold DNA-Polymerase (ThermoFisher, Waltham, MA, USA).

Subsequently to purification by Agencourt AMPure XP (Beckman Coulter, Brea, CA,
USA) and quantification by Qubit dsDNA HS-Assay (ThermoFisher), amplicons were
pooled in an equimolar concentration and indexed by Kapa-HiFi HotStart (Sigma-Aldrich,
St. Louis, MO, USA). Lastly, 15 pM of denatured pool was sequenced using MiSeq-reagent
kit v3 (2 × 300 base-pairs; Illumina) paired end run.

All sequences were screened for evidence of baseline quality control for short and low-
quality sequences. A quality control was performed by USEARCH commands fastq_filter
(using an accepted phred-score of 30) [29] and unoise3 (that remove chimera sequences
through UCHIME-algorithm) [30]. The mapping of cleaned reads was performed against
the GenBank reference genome HXB2 (K03455.1) using BWA-mem [31]. The mean cover-
age depth was 30,000× for both POL and C2-V3-C3. Reads mapping on HIV-1 reference
genome were able to cover 1043 nucleotides corresponding to 71.9% of PR+RT (HXB2-pol
nucleotides: 169–1618) and 230 nucleotides corresponding to 41.5% of C2-V3-C3 (HXB2-env
nucleotides: 598–1152), independently by HIV-1 subtype. All single nucleotide polymor-
phisms having a minimum supporting read frequency of 2% with a depth ≥10,000 were
retained. QuasiRecomb Software was used for haplotype reconstruction [32].

2.4. Estimation of Major Drug Resistance Mutations and Hypermutated Pol Sequences

Identical POL sequences (homology > 99%, number of sequences > 10) were clustered,
allowing identification of most representative strains for each patient at each time point.
The output consisting of a list of representative clusters of sequences and their relative
frequencies was used to evaluate the presence of major drug resistance mutations (MRMs),
hypermutant and thus defective strains, and stop codons.

MRMs to NRTI, NNRTIs or PI classes were defined according to the Stanford HIV
Drug Resistance Database 2020 (https://hivdb.stanford.edu/, last update 23 October 2020,
mutations reported in bold). INI resistance mutations were not considered for this analysis
as patients were INI-naïve.

Wilcoxon signed-rank and Mann-Whitney test were used to estimate changes in
MRMs prevalence within and between APACHE and MODAt subjects, respectively.

https://hivdb.stanford.edu/
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In order to define a trend of hypermutation and to detect potentially POL defective
variants, G-to-A mutation frequencies at GA or GG POL sites potentially induced by
APOBEC3-enzymes [33] and number of stop codons were predicted by https://www.
hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html (accessed on 25 June 2021)
using clustered and representative POL variants [34]. p-values were estimated for each
sequence at each time-point by using as reference both HXB2 and the most abundant strain
for each time-point. A p-value < 0.05, confirmed by using as reference both HXB2 and
most abundant strain, was used to determine if a specific strain is a hypermutant, and thus
probably defective.

2.5. Phylogenetic Analysis and Genealogical Sorting Index (GSI)

To assess potential compartmentalization among sampled virus populations, genetic
distance and phylogenetic estimates were performed on C2-V3-C3 region.

Firstly, for each sample at each time-point, pairwise genetic distance was computed
to quantify nucleotide diversity under the Tamura-Nei 93 model in the total number of
obtained C2-V3-C3 strains [35]. Thus, evolution of viral diversity was evaluated between
different time-points or over time within the same group (by Wilcoxon signed-rank or
Friedman-test), or between groups at different time-points (Mann-Whitney test). Cohen’s
delta coefficient was applied to exclude potential effect size (0 < |d| < 0.2 = negligible;
0.2 < |d| < 0.5 = small; 0.5 < |d| < 0.8 = medium; |d| > 0.8 = large).

To assess potential compartmentalization among sampled virus populations, identical
C2-V3-C3 sequences (homology > 99%, number of sequences > 10) were clustered, allowing
identification of most representative strains for each patient at each time point, following the
procedure used for POL sequences. A maximum likelihood tree by using the combinations
of clustered C2-V3-C3 proviral-DNA and viral-rebound sequences were inferred using
PhyML version 3.0. To assess the relatedness of virus compartments more objectively, we
determined genealogical sorting indices (GSI), that tests the phylogenetic similarities of
2 or more sequence groups, with the null hypothesis that the virus populations were the
same [36]. GSI values range from 0 (complete interspersion) to 1 (complete monophyly),
with statistical significance indicating greater than random segregation between/among
groups. GSI values were calculated using the genealogical Sorting R package (http://
molecularevolution.org/software/phylogenetics/gsi) (accessed on 21 November 2020) [36].
Statistical significance was assessed by randomly permuting character states across the tips
of the tree 1000 times. No significant values indicated the absence of compartmentalization.

All p-values were two-sided and corrected for multiple tests (Benjamini-Hockberg
correction) [37]. A p-value of less than 0.05 was considered statistically significant. All
analyses were performed using statistical software Rgui and SPSS version 19 (IBM Corp.
Armonk, NY, USA).

3. Results
3.1. Patients’ Population

The demographic and clinical characteristics by APACHE and MODAt participants
are shown in Table 1. Patients were mainly male and infected by B subtype (8/11; 72.7%).
At study entry, patients were on suppressive ART (median (Interquartile-range, IQR)
residual viremia: 2 (2–5) vs. 3 (2–7) copies/mL in APACHE and MODAt, respectively;
p-value = 0.662) for more than 2 years (median [IQR]: 11.5 [11.0–11.9] vs. 4.7 [2.9–6.7]
in APACHE and MODAt, respectively; p-value = 0.008). APACHE individuals experi-
enced viral-rebound between 14 and 56 ATI days and restarted ART after confirmation
of two viremia determinations >50 copies/mL. APACHE plasma viral-load was again
<50 copies/mL after 95 days (IQR:19–168) of ART restart (median (IQR) residual viremia: 4
(1–9) copies/mL).

https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html
https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html
http://molecularevolution.org/software/phylogenetics/gsi
http://molecularevolution.org/software/phylogenetics/gsi
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Table 1. Patients’ characteristics.

Patients’ Characteristics Overall
(N = 11)

APACHE Study
(N = 6)

MODAt Study
(N = 5) p-Value §

Age (years), median (IQR) 47.3 (43.4–1.2) 49.5 (47.3–51.2) 44.1 (43.4–45.2) 0.235
Male gender, N (%) 8 (72.7) 5 (83.3) 3 (60.0) 0.545
Subtype B, N (%) 8 (72.7) 3 (50.0) 5 (100.0) 0.182

Years since first HIV positive test, median
(IQR) 15.3 (9.3–19.4) 17.1 (15.3–22.8) 9.3 (4.0–11.4) 0.055

Years since ART start, median (IQR) 11.1 (6.1–17.6) 17.1 (13.5–18.1) 6.1 (3.2–9.0) 0.008
Years of HIV-1 RNA <50 copies/mL,

median (IQR) 9.6 (4.7–11.7) 11.5 (11.0–11.9) 4.7 (2.9–6.7) 0.008

Viro-immunological parameters at T1
(median, IQR):

HIV-DNA (copies/106 CD4+T-cells) 1037 (730–1311) 1048 (863–1286) 1037 (730–1750) 0.792
HIV-RNA * (copies/mL) 2 (2–7) 2 (2–5) 3 (2–7) 0.662
CD4+T-cells (cells/mm3) 748 (563–1012) 737 (563–1512) 774 (745–777) 0.931
CD8+T-cells (cells/mm3) 814 (451–1203) 1017 (333–1235) 685 (534–814) 0.523

CD4+/CD8+ ratio 1.24 (0.72–2.04) 1.44 (0.61–2.15) 1.24 (0.82–1.46) 0.784
Viro-immunological parameters at T2

(median, IQR):
HIV-DNA (copies/106 CD4+T-cells) 1567 (398–3307) 1916 (398–3798) 1087 (663–1567) 0.537

HIV-RNA (copies/mL) 2984 (3–69,820) 60,108
(12,251–1,680,510) 3 (2–4) * 0.004

CD4+T-cells (cells/mm3) 731 (521–1004) 590 (497–1064) 765 (731–890) 0.537
CD8+T-cells (cells/mm3) 829 (454–1341) 1041 (279–1341) 750 (594–1296) 0.998

CD4+/CD8+ ratio 1.19 (0.54–1.46) 1.13 (0.53–1.78) 1.19 (0.77–1.29) 0.784
Viro-immunological parameters at T3

(median, IQR):
HIV-DNA (copies/106 CD4+T-cells) 1104 (527–1867) 1333 (553–2183) 1104 (527–1598) 0.537

HIV-RNA * (copies/mL) 3 (0–7) 4 (1–9) 0 (0–5) 0.329
CD4+T-cells (cells/mm3) 816 (645–1096) 987 (645–1134) 728 (728–816) 0.429
CD8+T-cells (cells/mm3) 1003 (523–1257) 1066 (491–2058) 1003 (744–1043) 0.783

CD4+/CD8+ ratio 0.87 (0.62–1.33) 1.06 (0.51–1.33) 0.85 (0.78–0.98) 0.927
§ p-values by Mann-Whitney test or chi-square/Fisher exact test, as appropriate. * Residual viremia. Statistically significant differences
(p-values < 0.05) are highlighted in bold.

MODAt participants remained under virological control for all the study period.

3.2. Quantitative Measures of Reservoir Change

To estimate within-person changes in the size of the peripheral latent reservoir pre-
and post-ATI, we quantified peripheral-total HIV-DNA from PBMCs by ddPCR for all
participants at different time-points.

Firstly, no significant differences were observed in peripheral-total HIV-DNA values
at T1, T2, and T3 between APACHE and MODAt subjects. In particular, median (IQR)
peripheral-total DNA levels was 1048 (863–1286) and 1037 (730–1750) copies/106 CD4+T-
cells at T1 (pre-ATI), and 1916 (398–3798) and 1087 (663–1567) copies/106 CD4+T-cells at
T2, in APACHE and MODAt subjects, respectively. At T3, the median (IQR) HIV-DNA was
1333 (553–2183) in APACHE-group and 1104 (527–1598) in the MODAt-group.

Regarding change in time, time between T2-T1 was significantly lower in APACHE
respect to MODAt participants (median [IQR] weeks: 3.4 [2.9–5] vs. 12.0 [11.9–12.0],
respectively; p-value = 0.004). No difference was detected at T3-T2 (median [IQR] weeks:
18.6 [4.4–28.6] vs. 12.0 [12.0–12.1], respectively; p-value = 0.537).

Looking at HIV-DNA at different time-points, transient, but not significant, increase of
HIV-DNA during ATI was found in APACHE subjects (p-value = 0.311, Figure 1), while a
stable HIV-DNA values over-time was detected in MODAt (p-value = 0.819, Figure 1). This
is confirmed by comparing the decrease in HIV-DNA at different time points in APACHE
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and MODAt participants (Figure S2). In detail, in APACHE individuals a positive ∆T2–T1
HIV-DNA (median [IQR]: 0.44 [0.17; 0.65]) and a negative ∆T3-T2 HIV-DNA (median [IQR]:
−0.19 [−0.53; 0.40]) were observed, underlining the increase of HIV-DNA at viral rebound
and then a restoration at T3. On the other hand, in MODAt subjects the ∆ values are almost
comparable at different time points (median [IQR]; ∆T2–T1: 0.02 [−0.04; 0.18], ∆T3–T2:
−0.09 [−0.18; 0.01], ∆T3–T1: −0.14 [−0.20; 0.08]) thus indicating a stability of HIV-DNA
over time.

Figure 1. Total HIV-DNA of APACHE and MODAt patients at T1, T2 and T3. Each line represents
a patient. The black line represents the mean value at each time point, accompanied by error bars.
Table 1 to T2 and from T2 to T3 is expressed in weeks (median, IQR). p-value T1 vs. T3: Wilcoxon-test;
p-value T1 vs. T2 vs. T3 Friedman tests.

To further evaluate if the modification of HIV-DNA levels observed in APACHE
individuals might be affected by the duration in weeks between time-points, ∆HIV-DNA
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(T2–T1 HIV-DNA and T3–T2 HIV-DNA, respectively) were compared against ∆weeks
(T2–T1 weeks and T3–T2 weeks, respectively). Of note, longer was the change in time at
T3–T2, higher was the change in HIV-DNA observed at T3–T2 (Rho = 0.829, p-value = 0.042),
confirming the decay of HIV-1 reservoir against time [5–7]. No significant correlation was
observed between the T2-T1 HIV-DNA change and the change in time between T2 and T1
(Rho = 0.464, p-value = 0.354).

3.3. Major Drug Resistance Mutations Prevalence According to Time Points

At T1, 4/6 APACHE and 2/5 MODAt subjects carried HIV-DNA MRMs. The me-
dian intra-patient prevalence was 38.0% (IQR: 8.9–74.8) (mutational load: 249 [81–920]
copies/106 CD4+T-cells) for APACHE, and 58.2% (IQR: 47.1–99.5) (mutational load: 726
(179–824) copies/106 CD4+T-cells) for MODAt individuals (Table 2).

Table 2. Major drug resistance mutations and stop-codons in protease and reverse transcriptase found in APACHE and
MODAT participants at different time points.

Study ID Time 1 Time 2 Time 3
Sample HIV-DNA HIV-DNA HIV-RNA HIV-DNA

A001

PR: None
RT: D67N (99.4%), K70R

(99.6%), M184V (14.0%), T215I
(85.6%), K219Q (99.8%)

PR: None
RT: D67N (21.3%),

K70R (99.7%),
M184V (11.1%),
K219Q (10.2%)

PR: None
RT: K70R (99.6%)

PR: None
RT: D67N (99.3%), K70R

(99.7%), M184V (8.1%), T215I
(91.9%), K219Q (99.8%)

A002
PR: None

RT: W88 *(5.0%), G190E
(5.1%), W212 *(5.0%)

PR: None
RT: W88 *(5.0%),

W212 *(7.0%)

PR: None
RT: W88 *(5.0%),

W212 *(7.0%)

PR: None
RT: None

A009

PR: None
RT: D67N (6.2%), E138K

(7.3%), W153 * (4.8%), W212 *
(8.5%)

PR: None
RT: None

PR: None
RT: None

PR: None
RT: None

A011 PR: None
RT: None

PR: None
RT: None

PR: None
RT: None

PR: None
RT: None

A013 PR: None
RT: None

PR: None
RT: None

PR: None
RT: None

PR: None
RT: None

APACHE

A015

PR: None
RT: K65R (39.5%), K101E
(38.0%), Y181C (40.2%),

M184I (28.9%)

PR: None
RT: Q23 * (71.0%),

K65R (3.5%),
Y181C (6.5%),
M184I (3.6%),
W153 *(5.0%)

PR: None
RT: None

PR: None
RT: None

Sample HIV-DNA HIV-DNA HIV-DNA

M039
PR: None

RT: M41L (99.6%), T215C
(99.5%)

PR: None
RT: M41L (99.6%), M184I (6.9%), T215C

(99.4%)

PR: None
RT: M41L (93.7%), T215C

(98.6%)

M040 PR: None
RT: M41L (47.1%)

PR: None
RT: M41L (73.9%)

PR: None
RT: M41L (31.7%)

M056 PR: None
RT: None

PR: None
RT: None

PR: None
RT: None

M063 PR: W42 *(8.0%)
RT: None

PR: None
RT: None

PR: None
RT: None

MODAt

M066 PR: None
RT: None

PR: None
RT: None

PR: W42 *(5.0%), M46I (5.1%)
RT: W153 * (12.1%)

All the major drug resistance mutations (Stanford list 2020) detected in HIV-1 protease and reverse transcriptase by Illumina MiSeq with a
prevalence >2% have been considered. APOBEC DRMs (Stanford list 2020): PR: D30N, M46I, G48S, G73S; RT: D67N, V106I, E138K, M184I,
G190ES, M230I. APOBEC3-related MRMs are highlighted in bold. PR: protease; RT: reverse transcriptase. *: Stop codons.

At T2, HIV-DNA MRMs persisted in 2/4 (50.0%) APACHE individuals, with an intra-
patient prevalence that decreased from pre-ATI to ATI (38.0% [8.9–74.8] vs. 10.8% [5.0–16.2],
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p-value = 0.06; mutational load: 250 [81–920] vs. 65 [0–409] copies/106 CD4+T-cells,
p-value = 0.017).

At T3, HIV-DNA MRMs persisted only in 1 out 4 APACHE individuals (25.0%, Table 2,
patient A001). Of note, this patient was the only one presenting several MRMs with a
baseline intra-patient prevalence >80%, suggesting the presence of a dominant resistance
viral species. In the other APACHE patients, the archived MRMs completely disappeared
(intra-patient prevalence: 17.4% [6.2–38.0] vs. 0.0% [0.0–0.0], p-value = 0.008; mutational
load: 156 [67–277] vs. 0 [0–0] copies/106 CD4+T-cells, p-value = 0.008).

In the MODAT-group, MRMs persisted at DNA level in both subjects with baseline
MRMs at both T2 and T3 (ID: M039, M040; Table 2).

3.4. Defective Mutants over Time

Hypermutated sequences (p-value < 0.05) were found only in 1/6 APACHE sample
(ID: A009) (p = 0.002 by HXB2 and p-value = 0.0005 by most abundant strain; intra-patient
prevalence: 10.7%, time = T1). Of note, the two APOBEC3-related mutations at drug-
resistance positions characterizing this patient (D67N: 6.2% and E138K: 7.3%) were present
in the hypermutant POL strains, thus suggesting the presence of this mutation in potentially
defective proviruses. Accordingly, these variants were never detected at following time-
points (T2 and T3). Interestingly, at T1 other 3 APACHE individuals carried APOBEC3-
related mutations at drug-resistance positions (intra-patient prevalence: median 6.8% [IQR:
5.7–28.2], Table 2). In MODAt individuals, APOBEC3-related mutations were present only
in 2/5 patients (M039 at T2 and M063 at T3) and never with an intra-patient prevalence
higher than 10%.

In line with the low frequency of hypermutated strains, stop-codons were rarely found
in both APACHE and MODAt patients, and always with an intrapatient prevalence below
the 8%, with the sole exception of Q23 * (at T2 of A015; intra-patient prevalence: 71%)
(Table 1).

3.5. C2-V3-C3 Evolution

In order to define the viral evolution in APACHE and MODAt individuals, a pairwise
distance within C2-V3-C3 region was firstly assessed (Figure 2A). In detail, by comparing
C2-V3-C3 sequences, we observed a significant increase in overall genetic distance from T1
to T3 in APACHE individuals (median [IQR]: +0.036 [0.011–0.041], p-value = 0.04), while no
significant difference was found in MODAt patients (+0.018 [−0.001–0.024], p-value = 0.22).
These results were also confirmed by comparing with Friedman tests the C2-V3-C3 genetic
distance at the three time-points (APACHE: T1 vs. T2 vs. T3, p-value = 0.04; MODAt: T1 vs.
T2 vs. T3, p-value = 0.59). Moreover, by applying nonparametric tests to the longitudinally
collected samples for each patient, a significant variation in genetic diversity from T1 to T3
was found for 4/6 APACHE individuals, with the sole exception of A001 and A009, and
1/5 MODAT individuals (p-value < 0.05 and Cohen’s delta coefficient >0.8, Figure 2B). Of
note, A001 and A009 were characterized by high homogenous viral population at pre-ATI,
as suggested by the low genetic variability in C2-V3-C3 (Choen’s coefficient: 0.59 and 0.41
respectively, Figure 2).
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Figure 2. Change in HIV DNA molecular diversity (A) and C2-V3-C3 pairwise distance estimated for all samples in
APACHE and MODAt individuals (B). (A) Mean pairwise distance was estimated for all samples within C2-V3-C3 region in
APACHE (red dots for DNA and green dots for RNA) and MODAt (blue dots) individuals. For each sample, the means of
all pairwise Tamura-Nei 93 (TN93) distances among sequences were computed to quantify nucleotide diversity. p-value T1
vs. T3: Wicoxon-test; p-value T1 vs. T2 vs. T3 Friedman tests. (B) For each sample, the means of all pairwise Tamura-Nei 93
(TN93) distances among sequences was defined to quantify nucleotide diversity. p-value T1 vs. T3: Mann-Whitney test and
Cohen’s delta coefficient. Samples with a C2-V3-C3 pairwise distance characterized by a Cohen’s delta coefficient >0.8 and
by a p-value < 0.05 were shown in bold. The time (weeks) from T1 to T2 and from T2 to T3 were reported for each patient.
The black dots represent the abundance, Ns represent the numbers of sequences.
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Subsequently, a C2-V3-C3 phylogenetic analysis was carried out on representative
clustered strains to evaluate whether the treatment interruption and the transient viremia
changed the composition of the populations of the viral reservoir. Maximum likelihood phy-
logenetic trees showed that in 5/6 (83%) APACHE patients pre-ATI DNA sequences were
generally distinct (boostrap > 70%) from viral-rebound and post-ATI viruses (Figure 3),
and that in vivo viral-rebound was not predicted by the expansion of pre-ATI viral lin-
eage. Differently, post-ATI viruses were enriched by viral-rebound strains in 4/6 (66.7%)
APACHE individuals, with the sole exception of A001 and A009. Of note, the lack of
evolution observed at post-ATI in A001 and A009 is in line with the results obtained by
MRMs evaluation and C2-V3-C3 genetic distance.

Figure 3. Maximum likelihood phylogenetic reconstruction of C2-V3-C3 region in APACHE (A) and MODAt (M) patients
(PhyML). C2-V3-C3 sequences were used to construct maximum likelihood phylogenies. Time points 1, 2, and 3 are depicted
in red, blue, and green, respectively. RNA at time 2 is depicted in dark green. Tip size is proportional to variant frequency.
Scale bars are in substitutions/site. Asterisks (*) indicate a bootstrap ≥70%.



Viruses 2021, 13, 1403 11 of 16

On the contrary, in 4/5 (80%) MODAt patients the phylogenies for C2-V3-C3 regions
showed that virus populations at the three time-points were highly interspersed (Figure 3).

Furthermore, to assess the relatedness of virus compartments more objectively, we
determined a genealogical sorting index (GSI). GSI values range from 0 (complete inter-
spersion) to 1 (complete monophyly), with statistical significance indicating greater than
random segregation between/among groups.

In APACHE patients, GSI values obtained at different time-points indicated that
the majority of participants had highly monophyletic virus populations (GSI > 0.50;
p-value < 0.05). Only the sequences for participants A001 and A009 had low GSI value,
indicating similar sequences between T1 and T3 for A001 and highly interspersed se-
quences over-time for A009 (Table 3). Looking at pairwise comparisons, in 5 out of six
participants, the T1 proviral sequences differed significantly (GSI > 0.50; p-value < 0.05)
from T2 (both proviral and rebound viruses), suggesting that the rebound viruses during
ATI does not arise from the pre-ATI sequences. In four out of six participants, both the T2
proviral and rebound sequences did not differ significantly (GSI ≤ 0.50; p-value < 0.05)
from T3 proviral-DNA, suggesting a contribution of rebound sequences to viral evolution
of post-ATI viruses.

Table 3. Genealogical Sorting Indices for C2-V3.

T1 DNA vs.
T2 DNA

T1 DNA vs. T2
RNA

T1 DNA vs. T3
DNA

T2 DNA vs.
T2 RNA

T2 RNA vs.
T3 DNA

T2 DNA vs.
T3 DNA

APACHE A001 1.00 * vs.
0.99 * 1.00 * vs. 0.99 * 0.50 vs. 0.99 * 0.11 vs. 0.32 1.00 * vs.

0.99 *
0.96 * vs.

0.98 *
APACHE A002 0.16 vs. 0.68 * 0.32 vs. 0.72 * 0.61 * vs. 0.73 * 0.43 vs. 0.68 * 0.01 vs. 0.01 0.29 vs. 0.45
APACHE A009 0.20 vs. 0.08 0.08 vs. 0.10 0.06 vs. 0.08 0.05 vs. 0.08 0.05 vs. 0.08 0.07 vs. 0.18

APACHE A011 0.89 * vs.
0.52 * 0.93 * vs. 0.57 * 1.00 * vs. 0.99 * 0.11 vs. 0.16 0.48 vs. 0.44 0.42 vs. 0.46

APACHE A013 0.85 * vs.
0.70 * 0.92 * vs. 0.99 * 0.94 * vs. 0.56 * 0.11 vs. 0.26 0.31 vs. 0.21 0.37 vs. 0.19

APACHE A015 0.99 * vs.
0.84 * 0.93 * vs. 0.55 * 0.93 * vs. 0.55 * 0.28 vs. 0.31 0.90 * vs. 0.45 0.69 * vs. 0.47

MODAt M039 0.62 * vs. 0.33 // 0.47 vs. 0.78 * // // 0.34 vs. 0.81 *
MODAt M040 0.10 vs. 0.16 // 0.10 vs. 0.18 // // 0.16 vs. 0.18
MODAt M056 0.23 vs. 0.11 // 0.11 vs. 0.15 // // 0.20 vs. 0.37
MODAt M063 0.32 vs. 0.40 // 0.75 * vs. 0.51 * // // 0.38 vs. 0.37

MODAt M066 1.00 * vs.
0.99 * // 1.00 * vs. 0.95 * // // 1.00 * vs.

0.99 *

Genealogical-Sorting-Indexes (GSI) values were calculated using the genealogical Sorting R package. (http://molecularevolution.org/
software/phylogenetics/gsi/download, accessed on 21 November 2020). GSI values range from 0 (complete interspersion) to 1 (complete
monophyly). Statistical significance was assessed by randomly permuting character states across the tips of the tree 1000 times. Non-
significant values indicate the absence of compartmentalization. GSI > 0.50 accompanied by p-value < 0.05 are in bold. * p-value < 0.05 after
Benjamini-Hockberg correction.

Differently, in MODAt patients GSI values indicated that the majority of participants
had highly interspersed virus populations (GSI ≤ 0.50; p-value > 0.05). Indeed, low and
no significant GSI values between T1 and T3 were found in 80% (4/5) MODAT patients.
Only patient M66 had a statistically significantly high GSI value, indicating changes in the
composition of the proviral-DNA over-time (Table 3). The highly interspersed T1-, T2- and
T3-sequence sets support the concept that a continuous viral suppression no substantial
changes to the sampled reservoir.

4. Discussion

Today, a major objective of current HIV research is the development of functional
cure strategies aimed to achieve long-term virological remission [24,38]. In this context,
short-term ATI has been occasionally used, even if doubts and uncertainties about the role
of ATI in the short term remain [19,23,26].

http://molecularevolution.org/software/phylogenetics/gsi/download
http://molecularevolution.org/software/phylogenetics/gsi/download


Viruses 2021, 13, 1403 12 of 16

Here, we used samples from patients enrolled in the APACHE study [26] to assess the
effect of ATI in term of burden and rearrangement of peripheral HIV reservoir, in well charac-
terized subjects with common features, like plasma HIV-RNA <50 copies/mL for ≥10 years,
no viral blip for ≥5 years, CD4+T-cells >500 cells/mm3, HIV-DNA <100 copies/106 PBMCs
and without comorbidities or AIDS-defining diseases. These patients were compared with
a group of patients enrolled in the MODAt study (subjects in triple-ART in virological
suppression) [28].

We firstly assessed the impact of ATI on the amount of peripheral-total HIV-DNA,
considered as a global marker of HIV persistence and progression [39,40]. We did not find
any significant change in the size of the peripheral reservoir between pre-ATI and post-ATI.
Only a transient, but insignificant, increase in HIV-DNA during ATI was found in subjects
belonging to APACHE study (p-value = 0.311, Figure 1). No differences in HIV-DNA were
also found over-time among the MODAt participants. These results are in line with data
published so far, that reported no significant change in the size of the HIV-1 peripheral
reservoir after ART resumption [21,26], with the only exception for a transient expansion
of HIV-1 reservoir in CD4+T-cells, as well as immune markers, during ATI [21].

Even if total HIV-DNA quantification reveals a stability in the amount of peripheral
HIV reservoir, differences in the archived MRMs between pre- and post-ATI were found. In
particular, in three out four APACHE individuals (ID: A002, A009, A015), pre-ATI MRMs
were lost during virological rebound and in post-ATI HIV-DNA. All these MRMs were char-
acterized by pre-ATI intra-patient prevalence <80%. The only APACHE individual where a
consistent disappearance of MRMs was not observed (A001), was mostly characterized
by MRMs with an intra-patient prevalence >80%. Overall data suggest that the absence of
ART selective pressure during ATI combined with the low intra-patient prevalence of some
MRMs might participate in the disappearance of low-abundant drug resistance mutations.
In line with the hypothesis that ATI and the absence of ART selective pressure might cause
a re-assortment of MRMs, in MODAt patients drug resistance mutations persisted across
all three time-points independently by their baseline intra-patient prevalence.

Interestingly, most of mutations at drug resistance positions found in APACHE sub-
jects (i.e., D67N, G190E, E138K, M184I) derived by G to A substitutions, and thus probably
related to an hypermutation process induced by APOBEC3-enzymes, as suggested by the
presence of D67N and E138K in hypermutant and probably defective HIV-DNA strains
at T1 of A009. Thus, the presence of these mutations in potentially defected strains might
have accelerated their disappearance at following time points [41].

No emergence of new MRMs was observed neither during ATI nor post-ATI, data
in line with Clarridge and colleagues, who observed no evidence of emergence of an-
tiretroviral drug resistance mutations within intact HIV proviral-DNA sequences following
reinitiation of ART [21].

In line with the disappearance of MRMs observed in APACHE individuals during and
after ATI, the analysis of C2-V3-C3 revealed a more pronounced viral evolution in APACHE
than in MODAt participants. In particular, a significant C2-V3-C3 divergence was observed
from T1 to T3 in the majority of APACHE subjects and in none of MODAt individuals. In
parallel with the variation in genetic distance, phylogenetic analyses showed significant
differences in the composition of the peripheral reservoir before and after ATI in APACHE
individuals, and no substantial differences in MODAt patients. In particular, the pre-ATI
HIV-DNA strains did not align closely with the rebound viruses in most of the APACHE
participants (5/6). The striking discordance between the pre-ATI sequences and rebound
viruses can be explained by a fraction of a potentially large and diverse reservoir capable
of reactivating, and probably arisen by different HIV reservoir (i.e., lymph nodes or central
nervous system or GALT). These results are in accordance with Salantes and colleagues,
that through phylogenetic analyses of HIV-1 env sequences from QVOA and proviral-DNA,
showed that pre-ATI reservoir sampling did not predict viral-rebound [22]. Differently by
Salantes and colleagues that showed a minimal viral diversification between pre-ATI and
post-ATI, in our population viral strains found in post-ATI appeared to be enriched by ATI
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in four out of six individuals, suggesting that transient viremia could partially influence
the genetic divergence of the peripheral reservoir [25]. Only in two participants (A001
and A009) the presence of a dominant probably clonally expanded population in pre-ATI
sampling contributes to post-ATI sequences.

Notably, the apparently different results between Salantes and us can be explained
by the distinct populations analysed in the two studies. In our work, the timing of the
sampling post-ATI is just at achievement of undetectable VL after ART resumption, and
not at least 6 months after viral suppression [11,22]. This might explain the higher genetic
imprint of viral rebound variants in the post-ATI reservoir repertoire found in our patients.
Moreover, the study by Salantes and colleagues, based on single genome sequencing
approach, includes individuals who underwent ATIs after receiving the infusion of the
bnAb VRC01 [11]. This intervention may have had consequences on the HIV reservoir,
by enhancing its stability. Differently, our study is characterized by individuals who
underwent ATIs without any other intervention, allowing us to appreciate the role of ATIs
devoid of any kind of interference.

Differently by APACHE individuals, the highly interspersed C2-V3-C3 sequences at
the different time-points in MODAt participants support the hypothesis that in presence of
continuous viral suppression no substantial changes to the sampled reservoir can occur.

Our study has some limitations. We did not evaluate replication-competent virus
neither cell-associated HIV-RNA, defined as a biomarker of HIV persistence and latency
reversion. The amount and the characterization of viral reservoir in other districts, like
lymph nodes, GALT, was not assessed. In order to define viral evolution, we analysed
pol and C2-V3-C3 region, and not the whole HIV-1 genome, even if all the analyses pro-
vided concordant and reliable results. Due to the conservative criteria we adopted for
ART resumption, we could not evaluate the immune-mediated viral control that could
theoretically have occurred after an initial transient rebound. Finally, the small number
of patients here analyzed limits the power of the study and the possibility to draw gen-
eral conclusions. Detecting differences between individuals who underwent ATI versus
those who successfully continued ART in the considered outcomes, or their determinants
remains challenging.

5. Conclusions

In conclusion, our results confirm that a closely monitored short interruption of
treatment does not affect the amount of post-ATI peripheral-total HIV-DNA values, nor
the efficacy of ART in inducing viral suppression, thus representing a safe intervention.
In some patients, it might cause a genetic diversification of peripheral viral reservoir both
in term of MRMs rearrangement and in term of viral evolution, that again do not affect
the efficacy of antiretroviral drugs used. These results do not exclude that rebound viral
strains released from different anatomical HIV reservoirs (i.e., GALT or lymph-nodes or
CNS) might participate in the modification of new peripheral viral composition of post-ATI
reservoir. In two cases ATI did not cause peripheral virus rearrangement. Both cases
presented reduced viral divergence at T1 as suggested by the limited C2-V3-C3 intra-
host variability and the presence of fixed resistant mutations in the almost totality viral
population. Thus, we can speculate that the presence of a dominant population at baseline
of treatment interruption might be related with lower probability of peripheral reservoir
rearrangement during/post-ATI. No patient enrolled in this study achieved long-term
virological control in the absence of ART, thus limiting the possibility to draw conclusions
about parameters related to HIV control. Thus, a complete definition of key and reliable
viral parameters for future HIV-1 cure strategies remains challenging.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13071403/s1, Figure S1: Time points and virological parameters analyzed in APACHE (A) and
MODAt patients (B). Figure S2: HIV-DNA decrease at different time-points. The ∆ HIV-DNA was
calculated as the difference in HIV-DNA values at different time-points considered. p-values were
estimated by Mann-Whitney test. Table S1: NGS primers used to sequencing HIV-1. Clustered POL
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and C2-V3-C3 sequences were submitted to GenBank and are available under the following accession
numbers: POL BankIt2476731: MZ494751–MZ494949; V3 BankIt2476739: MZ494950–MZ49622.
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