1,864 research outputs found

    Cycles of Police Reform in Latin America.

    Get PDF
    yesOver the last quarter century post-conflict and post-authoritarian transitions in Latin America have been accompanied by a surge in social violence, acquisitive crime, and insecurity. These phenomena have been driven by an expanding international narcotics trade, by the long-term effects of civil war and counter-insurgency (resulting in, inter alia, an increased availability of small arms and a pervasive grammar of violence), and by structural stresses on society (unemployment, hyper-inflation, widening income inequality). Local police forces proved to be generally ineffective in preventing, resolving, or detecting such crime and forms of “new violence”3 due to corruption, frequent complicity in criminal networks, poor training and low pay, and the routine use of excessive force without due sanction. Why, then, have governments been slow to prioritize police reform and why have reform efforts borne largely “limited or nonexistent” long-term results? This chapter highlights a number of lessons suggested by various efforts to reform the police in Latin America over the period 1995-2010 . It focuses on two clusters of countries in Latin America. One is Brazil and the Southern Cone countries (Chile, Argentina, and Uruguay), which made the transition to democracy from prolonged military authoritarian rule in the mid- to late 1980s. The other is Central America and the Andean region (principally El Salvador, Guatemala, Honduras, Peru, and Colombia), which emerged/have been emerging from armed conflict since the mid- 1990s. The chapter examines first the long history of international involvement in police and security sector reform in order to identify long-run tropes and path dependencies. It then focuses on a number of recurring themes: cycles of de- and re-militarization of the policing function; the “security gap” and “democratization dilemmas” involved in structural reforms; the opportunities offered by decentralization for more community-oriented police; and police capacity to resist reform and undermine accountability mechanisms

    Radio Emission from Ultra-Cool Dwarfs

    Full text link
    The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag

    Changes in stable isotope compositions during fasting in phocid seals

    Get PDF
    This study was supported by NSF grant #0213095 and by FRFC grant #2.4502.07 (F.R.S.-FNRS).Rationale:  The grey seal, Halichoerus grypus (GS), and the northern elephant seal, Mirounga angustirostris (NES), come ashore for reproduction. This period involves intense physiological processes such as lactation in females and a developmental post‐weaning fast in juveniles. Previous studies have shown that ÎŽ13C and ÎŽ15N values are affected by starvation, but the precise effects of fasting associated to lactation and post‐weaning fast in seals remain poorly understood. Methods:  To examine the effect of lactation and post‐weaning fast on stable isotope ratios in GS and NES, blood and hair were sampled from twenty‐one GS mother‐pup pairs on the Isle of May and on twenty‐two weaned NES pups at Año Nuevo State Reserve during their respective breeding seasons. Milk samples were also collected from GS mothers. Stable isotope measurements were performed with an isotope ratio mass spectrometer coupled to an N‐C elemental analyser. Results:  Changes in stable isotope ratios in blood components during fasting were similar and weak between GS and NES mothers especially in blood cells (GS: Δ15N = 0.05‰, Δ13C = 0.02‰; NES: Δ15N = 0.1‰, Δ13C = 0.1‰). GS showed a 15N discrimination factor between maternal and pup blood cells and milk, but not for 13C. The strongest relationship between the isotopic compositions of the mother and the pup was observed in the blood cells. Conclusion:  Isotopic consequences of lactation, fasting, and growth seem limited in NES and GS, especially in medium‐term integrator tissues of feeding activity such as blood cells. Stable isotope ratios in the blood of pups and mothers are correlated. We observed a subtle mother‐to‐pup fractionation factor. Our results suggest that pup blood cells are mostly relevant for exploring the ecology of female seals.PostprintPeer reviewe

    Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 Are Tuned to Increase Root Hair Density in Response Phosphate Deficiency in Arabidopsis thaliana

    Get PDF
    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1

    Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM)

    Get PDF
    We describe the use of atomic force microscopy (AFM) in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study

    Adherence to yoga and exercise interventions in a 6-month clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine factors that predict adherence to a mind-body intervention in a randomized trial.</p> <p>Design</p> <p>We analyzed adherence data from a 3-arm trial involving 135 generally healthy seniors 65–85 years of age randomized to a 6-month intervention consisting of: an Iyengar yoga class with home practice, an exercise class with home practice, or a wait-list control group. Outcome measures included cognitive function, mood, fatigue, anxiety, health-related quality of life, and physical measures. Adherence to the intervention was obtained by class attendance and biweekly home practice logs.</p> <p>Results</p> <p>The drop-out rate was 13%. Among the completers of the two active interventions, average yoga class attendance was 77% and home practice occurred 64% of all days. Average exercise class attendance was 69% and home exercise occurred 54% of all days. There were no clear effects of adherence on the significant study outcomes (quality of life and physical measures). Class attendance was significantly correlated with baseline measures of depression, fatigue, and physical components of health-related quality of life. Significant differences in baseline measures were also found between study completers and drop-outs in the active interventions. Adherence was not related to age, gender, or education level.</p> <p>Conclusion</p> <p>Healthy seniors have good attendance at classes with a physically active intervention. Home practice takes place over half of the time. Decreased adherence to a potentially beneficial intervention has the potential to decrease the effect of the intervention in a clinical trial because subjects who might sustain the greatest benefit will receive a lower dose of the intervention and subjects with higher adherence rates may be functioning closer to maximum ability before the intervention. Strategies to maximize adherence among subjects at greater risk for low adherence will be important for future trials, especially complementary treatments requiring greater effort than simple pill-taking.</p

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
    • 

    corecore