963 research outputs found

    Venom alkaloids against Chagas disease parasite: search for effective therapies

    Get PDF
    Chagas disease is an important disease affecting millions of patients in the New World and is caused by a protozoan transmitted by haematophagous kissing bugs. It can be treated with drugs during the early acute phase; however, effective therapy against the chronic form of Chagas disease has yet to be discovered and developed. We herein tested the activity of solenopsin alkaloids extracted from two species of fire ants against the protozoan parasite Trypanosoma cruzi, the aetiologic agent of Chagas disease. Although IC50 determinations showed that solenopsins are more toxic to the parasite than benznidazole, the drug of choice for Chagas disease treatment, the ant alkaloids presented a lower selectivity index. As a result of exposure to the alkaloids, the parasites became swollen and rounded in shape, with hypertrophied contractile vacuoles and intense cytoplasmic vacuolization, possibly resulting in osmotic stress; no accumulation of multiple kinetoplasts and/or nuclei was detected. Overexpressing phosphatidylinositol 3-kinase—an enzyme essential for osmoregulation that is a known target of solenopsins in mammalian cells—did not prevent swelling and vacuolization, nor did it counteract the toxic effects of alkaloids on the parasites. Additional experimental results suggested that solenopsins induced a type of autophagic and programmed cell death in T. cruzi. Solenopsins also reduced the intracellular proliferation of T. cruzi amastigotes in infected macrophages in a concentration-dependent manner and demonstrated activity against Trypanosoma brucei rhodesiense bloodstream forms, which is another important aetiological kinetoplastid parasite. The results suggest the potential of solenopsins as novel natural drugs against neglected parasitic diseases caused by kinetoplastids.Fil: Silva, Rafael C. M. Costa. Universidade Federal do Rio de Janeiro; BrasilFil: Fox, Eduardo G. P.. Universidade Federal do Rio de Janeiro; Brasil. South China Agricultural University; ChinaFil: Gomes, Fabio M.. Universidade Federal do Rio de Janeiro; Brasil. National Institutes of Health; Estados UnidosFil: Feijó, Daniel F.. Universidade Federal do Rio de Janeiro; BrasilFil: Ramos, Isabela. Universidade Federal do Rio de Janeiro; BrasilFil: Koeller, Carolina M.. Universidade Federal do Rio de Janeiro; Brasil. University at Buffalo; Estados UnidosFil: Costa, Tatiana F. R.. Universidade Federal do Rio de Janeiro; BrasilFil: Rodrigues, Nathalia S.. Universidade Federal do Rio de Janeiro; BrasilFil: Lima, Ana P.. Universidade Federal do Rio de Janeiro; BrasilFil: Atella, Georgia C.. Universidade Federal do Rio de Janeiro; BrasilFil: Rocha de Miranda, Kildare. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem; BrasilFil: Schoijet, Alejandra Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Alonso, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: de Alcântara Machado, Ednildo. Universidade Federal do Rio de Janeiro; BrasilFil: Heise, Norton. Universidade Federal do Rio de Janeiro; Brasi

    The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic and Ischemic Tissue Damage

    Get PDF
    SummaryMitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo

    TLR2, TLR4 and Protein kinase R (PKR) induced Type I Interferon sustains infection of Leishmania donovani in macrophages

    Get PDF
    Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-β). Here, we show that the gene expression of IFN-β by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2 (-/-) mice, while the levels in macrophages from myd88(-/-) mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2 (-/-) macrophages completely abolished induction of IFN-β gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2 (-/-)) or from protein kinase R (PKR) knock-out mice (pkr (-/-)), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr (-/-) macrophages but was fully restored by the addition of exogenous IFN-β, and parasite burdens were reduced in the spleen of pkr (-/-) mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development

    Enzyme replacement therapy with galsulfase in 34 children younger than five years of age with MPS VI

    Get PDF
    Background: Mucopolysaccharidosis type VI (MPS VI) is a progressive, chronic and multisystem lysosomal storage disease with a wide disease spectrum. Clinical and biochemical improvements have been reported for MPS VI patients on enzyme replacement therapy (ERT) with rhASB (recombinant human arylsulfatase B; galsulfase, Naglazyme (R), BioMarin Pharmaceutical Inc.), making early diagnosis and intervention imperative for optimal patient outcomes. Few studies have included children younger than five years of age. This report describes 34 MPS VI patients that started treatment with galsulfase before five years of age.Methods: Data from patients who initiated treatment at <5 years of age were collected from patients' medical records. Baseline and follow-up assessments of common symptoms that led to diagnosis and that were used to evaluate disease progression and treatment efficacy were evaluated.Results: A significant negative correlation was seen with treatment with ERT and urinary GAG levels. of those with baseline and follow-up growth data, 47% remained on their pre-treatment growth curve or moved to a higher percentile after treatment. of the 9 patients with baseline and follow-up sleep studies, 5 remained unaffected and 1 patient initially with mild sleep apnea showed improvement. Data regarding cardiac, ophthalmic, central nervous system, hearing, surgical interventions and development are also reported. No patient discontinued treatment due to an adverse event and all that were treatment-emergent resolved.Conclusions: the prescribed dosage of 1 mg/kg IV weekly with galsulfase ERT is shown to be safe and effective in slowing and/or improving certain aspects of the disease, although patients should be closely monitored for complications associated with the natural history of the disease, especially cardiac valve involvement and spinal cord compression. A long-term follow-up investigation of this group of children will provide further information on the benefits of early treatment as well as disease progression and treatment efficacy and safety in this young patient population. (C) 2013 Elsevier Inc. All rights reserved.BioMarin Pharmaceutical Inc.ShireGenzymeBioMarinFiocruz MS, Inst Nacl Saude Mulher Crianca & Adolescente Fern, Ctr Genet Med, BR-22250020 Rio de Janeiro, RJ, BrazilUniv Fed Bahia, Serv Genet Med, Salvador, BA, BrazilHosp Albert Sabin, Fortaleza, Ceara, BrazilUniv Fed Mato Grosso do Sul, Fac Med, Campo Grande, MS USAUniv São Paulo, Inst Crianca, São Paulo, BrazilHosp Barao de Lucena, Recife, PE, BrazilUniv Fed Parana, Hosp Clin, BR-80060000 Curitiba, Parana, BrazilCtr Reabilitacao Infantil, Natal, RN, BrazilHosp Univ Maranhao, Sao Luis, MA, BrazilUniversidade Federal de São Paulo, Ctr Referencia Erros Inatos Metab, São Paulo, SP, BrazilHosp São Paulo, Enzyme Replacement Therapy Serv, Hosp & Maternidade Celso Pierro, São Paulo, BrazilUniv Fed Rio Grande do Norte, HOSPED, Hosp Pediat Prof Heriberto Ferreira Bezerra, Natal, RN, BrazilUniv Fortaleza, Fortaleza, Ceara, BrazilUniv Fed Rio Grande do Norte, BR-59072970 Natal, RN, BrazilUniv Fed Triangulo Mineiro, Uberaba, MG, BrazilHosp Clin Acre, Rio Branco, AC, BrazilUniv Fed Espirito Santo, HUCAM, Vitoria, ES, BrazilUniversidade Federal de São Paulo, Ctr Referencia Erros Inatos Metab, São Paulo, SP, BrazilHosp São Paulo, Enzyme Replacement Therapy Serv, Hosp & Maternidade Celso Pierro, São Paulo, BrazilWeb of Scienc

    Phylogeographic pattern and extensive mitochondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata.

    Get PDF
    ABSTARCT: Previous studies have shown that "bioequivalent" generic products of vancomycin are less effective in vivo against Staphylococcus aureus than the innovator compound. Considering that suboptimal bactericidal effect has been associated with emergence of resistance, we aimed to assess in vivo the impact of exposure to innovator and generic products of vancomycin on S. aureus susceptibility. A clinical methicillin-resistant S. aureus (MRSA) strain from a liver transplant patient with persistent bacteremia was used for which MIC, minimum bactericidal concentration (MBC), and autolytic properties were determined. Susceptibility was also assessed by determining a population analysis profile (PAP) with vancomycin concentrations from 0 to 5 mg/liter. ICR neutropenic mice were inoculated in each thigh with ∼7.0 log(10) CFU. Treatment with the different vancomycin products (innovator and three generics; 1,200 mg/kg of body weight/day every 3 h) started 2 h later while the control group received sterile saline. After 24 h, mice were euthanized, and the thigh homogenates were plated. Recovered colonies were reinoculated to new groups of animals, and the exposure-recovery process was repeated until 12 cycles were completed. The evolution of resistance was assessed by PAP after cycles 5, 10, 11, and 12. The initial isolate displayed reduced autolysis and higher resistance frequencies than S. aureus ATCC 29213 but without vancomycin-intermediate S. aureus (VISA) subpopulations. After 12 cycles, innovator vancomycin had significantly reduced resistant subpopulations at 1, 2, and 3 mg/liter, while the generic products had enriched them progressively by orders of magnitude. The great capacity of generic vancomycin to select for less susceptible organisms raises concerns about the role of therapeutic inequivalence of any antimicrobial on the epidemiology of resistance worldwide

    High-resolution 3D analysis of mouse small-intestinal stroma.

    Get PDF
    Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota

    Purification of a lectin from Cratylia mollis crude extract seed by a single step PEG/phosphate aqueous two-phase system

    Get PDF
    The partitioning and purification of lectins from the crude extract of Cratylia mollis seeds (Cramoll 1,4) was investigated in aqueous two-phase systems (ATPS). A factorial design model (24) was used to evaluate the influence of polyethylene glycol (PEG) molar mass (15008000g/mol), PEG concentration (12.517.5% w/w), phosphate (1015% w/w) concentration, and pH (68) on the differential partitioning, purification factor, and yield of the lectin. Polymer and salt concentration were the most important variables affecting partition of lectin and used to find optimum purification factor by experimental BoxBehnken design together with the response surface methodology (RSM). ATPS showed best conditions composed by 13.9% PEG1500, 15.3% phosphate buffer at pH 6, which ensured purification factor of 4.70. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis showed a single band of protein with 26.1kDa. Furthermore, results demonstrated a thermostable lectin presenting activity until 60°C and lost hemagglutinating activity at 80°C. According to the obtained data it can be inferred that the ATPS optimization using RSM approach can be applied for recovery and purification of lectins.We are grateful to the following bodies for the grants awarded: CAPES (Coordination for the Improvement of Level Personnel Superior); FACEPE (Pernambuco Science and Technology Foundation): Researcher's scholarship grant: BFP-0017-5.05/18 CNPq (National Council for Scientific Development and Technological) process: 427153/2016-6 and we also thank the reviewers for their valuable comments and suggestions as these helped us to improve the manuscript.info:eu-repo/semantics/publishedVersio

    Enhanced Leishmania braziliensis Infection Following Pre-Exposure to Sandfly Saliva

    Get PDF
    Parasites of the genus Leishmania cause a variety of diseases known as leishmaniasis, that are transmitted by bites of female sand flies that, during blood-feeding, inject humans with parasites and saliva. It was shown that, in mice, immunity to sand-fly saliva is able to protect against the development of leishmaniasis. We have investigated, in the present study, whether this finding extends the sand fly species Lutzomyia intermedia, which is responsible for transmission of Leishmania braziliensis, a parasite species able to cause destructive skin lesions that can be fatal if left untreated. We observed that mice injected with sand fly saliva develop a specific immune response against salivary proteins. Most importantly, however, this immune response was unable to protect mice against a challenge infection with L. braziliensis, indicating that exposure to this sand fly saliva is harmful to the host. Indeed, subjects with cutaneous leishmaniasis have a higher immune response against L. intermedia saliva. These findings indicate that the anti-saliva immune response to sand fly saliva plays an important role in the outcome of leishmaniasis caused by L. braziliensis, in both mice and humans, and emphasize possible hurdles in the development of vaccines based on sand fly saliva
    corecore