74 research outputs found

    Long-term kidney function recovery and mortality after COVID-19-associated acute kidney injury: An international multi-centre observational cohort study

    Get PDF
    Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1–365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53–3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03–4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55–5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14–1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37–0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17–1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20–1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45–1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80–13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10–1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32–1.67) and 365 days (RR 1.54, 95%CI 1.21–1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section

    Complex financial networks and systemic risk: a review

    Get PDF
    In this paper we review recent advances in financial economics in relation to the measurement of systemic risk. We start by reviewing studies that apply traditional measures of risk to financial institutions. However, the main focus of the review is on studies that use network analysis paying special attention to those that apply complex analysis techniques. Applications of these techniques for the analysis and pricing of systemic risk has already provided significant benefits at least at the conceptual level but it also looks very promising from a practical point of view

    BMC Med Res Methodol

    No full text
    BACKGROUND: Value of information is now recognized as a reference method in the decision process underpinning cost-effectiveness evaluation. The expected value of perfect information (EVPI) is the expected value from completely reducing the uncertainty surrounding the cost-effectiveness of an innovative intervention. Among sample size calculation methods used in cost-effectiveness studies, only one is coherent with this decision framework. It uses a Bayesian approach and requires data of a pre-existing cost-effectiveness study to derive a valid prior EVPI. When evaluating the cost-effectiveness of innovations, no observed prior EVPI is usually available to calculate the sample size. We here propose a sample size calculation method for cost-effectiveness studies, that follows the value of information theory, and, being frequentist, can be based on assumptions if no observed prior EVPI is available. METHODS: The general principle of our method is to define the sampling distribution of the incremental net monetary benefit (DeltaB), or the distribution of DeltaB that would be observed in a planned cost-effectiveness study of size n. Based on this sampling distribution, the EVPI that would remain at the end of the trial (EVPIn) is estimated. The optimal sample size of the planned cost-effectiveness study is the n for which the cost of including an additional participant becomes equal or higher than the value of the information gathered through this inclusion. RESULTS: Our method is illustrated through four examples. The first one is used to present the method in depth and describe how the sample size may vary according to the parameters' value. The three other examples are used to illustrate in different situations how the sample size may vary according to the ceiling cost-effectiveness ratio, and how it compares with a test statistic-based method. We developed an R package (EBASS) to run these calculations. CONCLUSIONS: Our sample size calculation method follows the value of information theory that is now recommended for analyzing and interpreting cost-effectiveness data, and sets the size of a study that balances its cost and the value of its information
    • …
    corecore