85 research outputs found
Design, characterization and installation of the NEXT-100 cathode and electroluminescence regions
NEXT-100 is currently being constructed at the Laboratorio Subterr\'aneo de
Canfranc in the Spanish Pyrenees and will search for neutrinoless double beta
decay using a high-pressure gaseous time projection chamber (TPC) with 100 kg
of xenon. Charge amplification is carried out via electroluminescence (EL)
which is the process of accelerating electrons in a high electric field region
causing secondary scintillation of the medium proportional to the initial
charge. The NEXT-100 EL and cathode regions are made from tensioned hexagonal
meshes of 1 m diameter. This paper describes the design, characterization, and
installation of these parts for NEXT-100. Simulations of the electric field are
performed to model the drift and amplification of ionization electrons produced
in the detector under various EL region alignments and rotations. Measurements
of the electrostatic breakdown voltage in air characterize performance under
high voltage conditions and identify breakdown points. The electrostatic
deflection of the mesh is quantified and fit to a first-principles mechanical
model. Measurements were performed with both a standalone test EL region and
with the NEXT-100 EL region before its installation in the detector. Finally,
we describe the parts as installed in NEXT-100, following their deployment in
Summer 2023.Comment: 35 pages, 25 Figures, update includes accepted version in JINS
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life
sensitivities of ~ yr, requiring suppressing backgrounds to <1
count/tonne/yr. For this, any extra background rejection handle, beyond
excellent energy resolution and the use of extremely radiopure materials, is of
utmost importance. The NEXT experiment exploits differences in the spatial
ionization patterns of double beta decay and single-electron events to
discriminate signal from background. While the former display two Bragg peak
dense ionization regions at the opposite ends of the track, the latter
typically have only one such feature. Thus, comparing the energies at the track
extremes provides an additional rejection tool. The unique combination of the
topology-based background discrimination and excellent energy resolution (1%
FWHM at the Q-value of the decay) is the distinguishing feature of NEXT.
Previous studies demonstrated a topological background rejection factor of ~5
when reconstructing electron-positron pairs in the Tl 1.6 MeV double
escape peak (with Compton events as background), recorded in the NEXT-White
demonstrator at the Laboratorio Subterr\'aneo de Canfranc, with 72% signal
efficiency. This was recently improved through the use of a deep convolutional
neural network to yield a background rejection factor of ~10 with 65% signal
efficiency. Here, we present a new reconstruction method, based on the
Richardson-Lucy deconvolution algorithm, which allows reversing the blurring
induced by electron diffusion and electroluminescence light production in the
NEXT TPC. The new method yields highly refined 3D images of reconstructed
events, and, as a result, significantly improves the topological background
discrimination. When applied to real-data 1.6 MeV pairs, it leads to a
background rejection factor of 27 at 57% signal efficiency.Comment: Submitted to JHE
NEXT-CRAB-0: A High Pressure Gaseous Xenon Time Projection Chamber with a Direct VUV Camera Based Readout
The search for neutrinoless double beta decay () remains one
of the most compelling experimental avenues for the discovery in the neutrino
sector. Electroluminescent gas-phase time projection chambers are well suited
to searches due to their intrinsically precise energy
resolution and topological event identification capabilities. Scalability to
ton- and multi-ton masses requires readout of large-area electroluminescent
regions with fine spatial resolution, low radiogenic backgrounds, and a
scalable data acquisition system. This paper presents a detector prototype that
records event topology in an electroluminescent xenon gas TPC via VUV
image-intensified cameras. This enables an extendable readout of large tracking
planes with commercial devices that reside almost entirely outside of the
active medium.Following further development in intermediate scale
demonstrators, this technique may represent a novel and enlargeable method for
topological event imaging in .Comment: 32 Pages, 22 figure
Ba+2 ion trapping using organic submonolayer for ultra-low background neutrinoless double beta detector
If neutrinos are their own antiparticles the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay can occur. The very long lifetime expected for these exceptional events makes its detection a daunting task. In order to conduct an almost background-free experiment, the NEXT collaboration is investigating novel synthetic molecular sensors that may capture the Ba dication produced in the decay of certain Xe isotopes in a high-pressure gas experiment. The use of such molecular detectors immobilized on surfaces must be explored in the ultra-dry environment of a xenon gas chamber. Here, using a combination of highly sensitive surface science techniques in ultra-high vacuum, we demonstrate the possibility of employing the so-called Fluorescent Bicolor Indicator as the molecular component of the sensor. We unravel the ion capture process for these molecular indicators immobilized on a surface and explain the origin of the emission fluorescence shift associated to the ion trapping
Receita pública e bem-estar social nos municípios mineiros emancipados no período de 1988 a 1997
O movimento de descentralizações política, administrativa e fiscal intensificado a partir de 1988 tinha como objetivo promover a transferência de poder, recursos e atribuições para os governos locais. Além disso, esse fenômeno impulsionou o processo de emancipação municipal com o intuito de aproximar o poder público da sociedade, promovendo a melhoria da prestação de serviços. Este estudo apresenta a análise das receitas públicas e do bem-estar social dos municípios mineiros emancipados no período de 1988 a 1997. Para tanto, utilizaram-se testes de médias no intuito de comparar o desempenho dos municípios emancipados com o desempenho de seus municípios de origem. Como conclusão, verificou-se que os novos municípios são beneficiados com as transferências governamentais e possuem a mesma capacidade de arrecadação tributária dos seus municípios de origem. Não obstante, isso não permitiu que os citados municípios apresentassem nível de bem-estar superior em relação aos municípios de origem, assim como maior eficiência na gestão desses recursos, uma vez que estão mais próximos dos usuários
A Compact Dication Source for Ba Tagging and Heavy Metal Ion Sensor Development
We present a tunable metal ion beam that delivers controllable ion currents
in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed
by sequential atomic evaporation and single or multiple electron impact
ionization, followed by acceleration into a sensing region. Controllability of
the ionic charge state is achieved through tuning of electrode potentials that
influence the retention time in the ionization region. Barium, lead, and cobalt
samples have been used to test the system, with ion currents identified and
quantified using a quadrupole mass analyzer. Realization of a clean
ion beam within a bench-top system represents an important
technical advance toward the development and characterization of barium tagging
systems for neutrinoless double beta decay searches in xenon gas. This system
also provides a testbed for investigation of novel ion sensing methodologies
for environmental assay applications, with dication beams of Pb and
Cd also demonstrated for this purpose
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ~ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ~ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e-e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency. [Figure not available: see fulltext.]. © 2021, The Author(s)
- …