44 research outputs found
A diet enriched in omega-3 PUFA and inulin prevents type 1 diabetes by restoring gut barrier integrity and immune homeostasis in NOD mice
IntroductionThe integrity of the gut barrier (GB) is fundamental to regulate the crosstalk between the microbiota and the immune system and to prevent inflammation and autoimmunity at the intestinal level but also in organs distal from the gut such as the pancreatic islets. In support to this idea, we recently demonstrated that breakage of GB integrity leads to activation of islet-reactive T cells and triggers autoimmune Type 1 Diabetes (T1D). In T1D patients as in the NOD mice, the spontaneous model of autoimmune diabetes, there are alterations of the GB that specifically affect structure and composition of the mucus layer; however, it is yet to be determined whether a causal link between breakage of the GB integrity and occurrence of autoimmune T1D exists. MethodsHere we restored GB integrity in the NOD mice through administration of an anti-inflammatory diet (AID- enriched in soluble fiber inulin and omega 3-PUFA) and tested the effect on T1D pathogenesis. ResultsWe found that the AID prevented T1D in NOD mice by restoring GB integrity with increased mucus layer thickness and higher mRNA transcripts of structural (Muc2) and immunoregulatory mucins (Muc1 and Muc3) as well as of tight junction proteins (claudin1). Restoration of GB integrity was linked to reduction of intestinal inflammation (i.e., reduced expression of IL-1 beta, IL-23 and IL-17 transcripts) and expansion of regulatory T cells (FoxP3(+) Treg cells and IL-10(+) Tr1 cells) at the expenses of effector Th1/Th17 cells in the intestine, pancreatic lymph nodes (PLN) and intra-islet lymphocytes (IIL) of AID-fed NOD mice. Importantly, the restoration of GB integrity and immune homeostasis were associated with enhanced concentrations of anti-inflammatory metabolites of the omega 3/omega 6 polyunsaturated fatty acids (PUFA) and arachidonic pathways and modifications of the microbiome profile with increased relative abundance of mucus-modulating bacterial species such as Akkermansia muciniphila and Akkermansia glycaniphila. DiscussionOur data provide evidence that the restoration of GB integrity and intestinal immune homeostasis through administration of a tolerogenic AID that changed the gut microbial and metabolic profiles prevents autoimmune T1D in preclinical models
Pulmonary Arterial Hypertension Affects the Rat Gut Microbiome
We have analysed whether pulmonary arterial hypertension (PAH) alters the rat faecal microbiota.
Wistar rats were injected with the VEGF receptor antagonist SU5416 (20 mg/kg s.c.) and followed
for 2 weeks kept in hypoxia (10% O2, PAH) or injected with vehicle and kept in normoxia (controls).
Faecal samples were obtained and microbiome composition was determined by 16S rRNA gene
sequencing and bioinformatic analysis. No effect of PAH on the global microbiome was found (α- or
β-diversity). However, PAH-exposed rats showed gut dysbiosis as indicated by a taxonomy-based
analysis. Specifically, PAH rats had a three-fold increase in Firmicutes-to-Bacteroidetes ratio. Within
the Firmicutes phylum, there were no large changes in the relative abundance of the bacterial families
in PAH. Among Bacteroidetes, all families were less abundant in PAH. A clear separation was observed
between the control and PAH clusters based on short chain fatty acid producing bacterial genera.
Moreover, acetate was reduced in the serum of PAH rats. In conclusion, faecal microbiota composition is
altered as a result of PAH. This misbalanced bacterial ecosystem might in turn play a pathophysiological
role in PAH by altering the immunologic, hormonal and metabolic homeostasis.This study is supported by grants from Mineco (SAF2014-55399-R, SAF2014-55523-R,
SAF2016-77222 and SAF2017-84494-C2-1R), Instituto de Salud Carlos III (PI15/01100), with funds from the
European Union (Fondo Europeo de Desarrollo Regional FEDER). M.C., G.M-P. and S.E-R. are funded by
Universidad Complutense, Fondo de Garantía Juvenil (Comunidad de Madrid) and Ciberes grant with funds
from Fundación Contra la Hipertensión Pulmonar, a FPU grant from Ministerio de Educación, respectively.
J.L.I.G is a CNIC IPP COFUND Fellow and has received funding from the People Programme (Marie Curie
Actions) of the FP7/2007-2013 under REA grant agreement n° 600396. The CNIC is supported by MEIC-AEI and
the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505)
Increased iNKT17 Cell Frequency in the Intestine of Non-Obese Diabetic Mice Correlates With High Bacterioidales and Low Clostridiales Abundance
iNKT cells play different immune function depending on their cytokine-secretion phenotype. iNKT17 cells predominantly secrete IL-17 and have an effector and pathogenic role in the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). In line with this notion, non-obese diabetic (NOD) mice that spontaneously develop T1D have an increased percentage of iNKT17 cells compared to non-autoimmune strains of mice. The factors that regulate iNKT cell expansion and acquisition of a specific iNKT17 cell phenotype are unclear. Here, we demonstrate that the percentage of iNKT17 cells is increased in the gut more than peripheral lymphoid organs of NOD mice, thus suggesting that the intestinal environment promotes iNKT17 cell differentiation in these mice. Increased intestinal iNKT17 cell differentiation in NOD mice is associated with the presence of pro-inflammatory IL-6-secreting dendritic cells that could contribute to iNKT cell expansion and iNKT17 cell differentiation. In addition, we found that increased iNKT17 cell differentiation in the large intestine of NOD mice is associated with a specific gut microbiota profile. We demonstrated a positive correlation between percentage of intestinal iNKT17 cells and bacterial strain richness (α-diversity) and relative abundance of Bacterioidales strains. On the contrary, the relative abundance of the anti-inflammatory Clostridiales strains negatively correlates with the intestinal iNKT17 cell frequency. Considering that iNKT17 cells play a key pathogenic role in T1D, our data support the notion that modulation of iNKT17 cell differentiation through gut microbiota changes could have a beneficial effect in T1D
CCR9 Expressing T Helper and T Follicular Helper Cells Exhibit Site-Specific Identities During Inflammatory Disease
CD4+ T helper (Th) cells that express the gut homing chemokine receptor CCR9 are increased in the peripheral blood of patients with inflammatory bowel disease and Sjögren's syndrome and in the inflamed lesions of autoimmune diseases that affect the accessory organs of the digestive system. However, despite the important role of the GIT in both immunity and autoimmunity, the nature of CCR9-expressing cells in GIT lymphoid organs and their role in chronic inflammatory diseases remains unknown. In this study, we analyzed the characteristics of CCR9+ Th and T follicular helper (Tfh) cells in GIT associated lymphoid tissues in health, chronic inflammation and autoimmunity. Our findings reveal an association between the transcriptome and phenotype of CCR9+ Th in the pancreas and CCR9+ Tfh cells from GIT-associated lymphoid tissues. GIT CCR9+ Tfh cells exhibited characteristics, including a Th17-like transcriptome and production of effector cytokines, which indicated a microenvironment-specific signature. Both CCR9+ Tfh cells and CCR9+ Th cells from GIT-associated lymphoid tissues migrated to the pancreas. The expression of CCR9 was important for migration of both subsets to the pancreas, but Tfh cells that accumulated in the pancreas had downmodulated expression of CXCR5. Taken together, the findings provide evidence that CCR9+ Tfh cells and Th cells from the GIT exhibit plasticity and can accumulate in distal accessory organs of the digestive system where they may participate in autoimmunity
Loss of gut barrier integrity triggers autoimmune diabetes through microbiota-induced activation of islet-reactive T cells
Abstract
Recent evidence suggests that the intestinal environment and, specifically, modifications of the microbiome profile, regulate the pathogenesis of extra-intestinal autoimmune diseases such as Type 1 Diabetes (T1D) by inducing intestinal inflammation and increasing gut permeability. Although low-grade intestinal inflammation and alterations of gut barrier integrity are found in humans and animal models of T1D, a direct causal link between enteropathy and triggering of beta cell autoimmunity is yet to be established. Here we show that breakage of the gut barrier integrity (by low-dose DSS administration) in BDC2.5XNOD mice carrying a transgenic TCR specific for a beta cell-autoantigen leads to activation of the islet-reactive T cell clone (BDC2.5) within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota. Importantly, we found that gut microbial antigens are directly capable to activate the diabetogenic BDC2.5 T cells with a TCR-mediated mechanism. Our results indicate that loss of the intestinal barrier continuity is directly responsible for activation of islet-specific T cells by commensal gut microbiota and provide a strong rationale to design innovative therapeutic interventions in “at risk” individuals aimed at restoring gut barrier integrity to prevent T1D.</jats:p
Oral Probiotic VSL#3 Prevents Autoimmune Diabetes by Modulating Microbiota and Promoting Indoleamine 2,3-Dioxygenase-Enriched Tolerogenic Intestinal Environment
The gut microbiota modulates the autoimmune pathogenesis of type 1 diabetes (T1D) via mechanisms that remain largely unknown. The inflammasome components are innate immune sensors that are highly influenced by the gut environment and play pivotal roles in maintaining intestinal immune homeostasis. In this study we show that modifications of the gut microbiota induced by oral treatment with Lactobacillaceae-enriched probiotic VSL#3, alone or in combination with retinoic acid (RA), protect NOD mice from T1D by affecting inflammasome at the intestinal level. In particular, we show that VSL#3 treatment inhibits IL-1β expression while enhancing release of protolerogenic components of the inflammasome, such as indoleamine 2,3-dioxygenase (IDO) and IL-33. Those modifications of the intestinal microenvironment in VSL#3-treated NOD mice modulate gut immunity by promoting differentiation of tolerogenic CD103+ DCs and reducing differentiation/expansion of Th1 and Th17 cells in the intestinal mucosa and at the sites of autoimmunity, that is, within the pancreatic lymph nodes (PLN) of VSL#3-treated NOD mice.
Our data provide a link between dietary factors, microbiota composition, intestinal inflammation, and immune homeostasis in autoimmune diabetes and could pave the way for new therapeutic approaches aimed at changing the intestinal microenvironment with probiotics to counterregulate autoimmunity and prevent T1D
data_sheet_1_Increased iNKT17 Cell Frequency in the Intestine of Non-Obese Diabetic Mice Correlates With High Bacterioidales and Low Clostridiales Abundance.PDF
<p>iNKT cells play different immune function depending on their cytokine-secretion phenotype. iNKT17 cells predominantly secrete IL-17 and have an effector and pathogenic role in the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). In line with this notion, non-obese diabetic (NOD) mice that spontaneously develop T1D have an increased percentage of iNKT17 cells compared to non-autoimmune strains of mice. The factors that regulate iNKT cell expansion and acquisition of a specific iNKT17 cell phenotype are unclear. Here, we demonstrate that the percentage of iNKT17 cells is increased in the gut more than peripheral lymphoid organs of NOD mice, thus suggesting that the intestinal environment promotes iNKT17 cell differentiation in these mice. Increased intestinal iNKT17 cell differentiation in NOD mice is associated with the presence of pro-inflammatory IL-6-secreting dendritic cells that could contribute to iNKT cell expansion and iNKT17 cell differentiation. In addition, we found that increased iNKT17 cell differentiation in the large intestine of NOD mice is associated with a specific gut microbiota profile. We demonstrated a positive correlation between percentage of intestinal iNKT17 cells and bacterial strain richness (α-diversity) and relative abundance of Bacterioidales strains. On the contrary, the relative abundance of the anti-inflammatory Clostridiales strains negatively correlates with the intestinal iNKT17 cell frequency. Considering that iNKT17 cells play a key pathogenic role in T1D, our data support the notion that modulation of iNKT17 cell differentiation through gut microbiota changes could have a beneficial effect in T1D.</p
MicroRNA-133b Regulation of Th-POK Expression and Dendritic Cell Signals Affect NKT17 Cell Differentiation in the Thymus
A diet enriched in omega-3 PUFA and inulin prevents type 1 diabetes by restoring gut barrier integrity and immune homeostasis in NOD mice
IntroductionThe integrity of the gut barrier (GB) is fundamental to regulate the crosstalk between the microbiota and the immune system and to prevent inflammation and autoimmunity at the intestinal level but also in organs distal from the gut such as the pancreatic islets. In support to this idea, we recently demonstrated that breakage of GB integrity leads to activation of islet-reactive T cells and triggers autoimmune Type 1 Diabetes (T1D). In T1D patients as in the NOD mice, the spontaneous model of autoimmune diabetes, there are alterations of the GB that specifically affect structure and composition of the mucus layer; however, it is yet to be determined whether a causal link between breakage of the GB integrity and occurrence of autoimmune T1D exists.MethodsHere we restored GB integrity in the NOD mice through administration of an anti-inflammatory diet (AID- enriched in soluble fiber inulin and omega 3-PUFA) and tested the effect on T1D pathogenesis.ResultsWe found that the AID prevented T1D in NOD mice by restoring GB integrity with increased mucus layer thickness and higher mRNA transcripts of structural (Muc2) and immunoregulatory mucins (Muc1 and Muc3) as well as of tight junction proteins (claudin1). Restoration of GB integrity was linked to reduction of intestinal inflammation (i.e., reduced expression of IL-1β, IL-23 and IL-17 transcripts) and expansion of regulatory T cells (FoxP3+ Treg cells and IL-10+ Tr1 cells) at the expenses of effector Th1/Th17 cells in the intestine, pancreatic lymph nodes (PLN) and intra-islet lymphocytes (IIL) of AID-fed NOD mice. Importantly, the restoration of GB integrity and immune homeostasis were associated with enhanced concentrations of anti-inflammatory metabolites of the ω3/ω6 polyunsaturated fatty acids (PUFA) and arachidonic pathways and modifications of the microbiome profile with increased relative abundance of mucus-modulating bacterial species such as Akkermansia muciniphila and Akkermansia glycaniphila.DiscussionOur data provide evidence that the restoration of GB integrity and intestinal immune homeostasis through administration of a tolerogenic AID that changed the gut microbial and metabolic profiles prevents autoimmune T1D in preclinical models.</jats:sec
Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes
Significance
Functional loss of gut barrier integrity with subsequent increased antigen trafficking and occurrence of low-grade intestinal inflammation precede the onset of type 1 diabetes (T1D) in patients and preclinical models, thus suggesting that these events are mechanistically linked to the autoimmune pathogenesis of the disease. However, a causal relationship between increased intestinal permeability and autoimmune diabetes was never demonstrated. Our data show that breakage of gut barrier continuity leads to activation of islet-reactive T cells in the intestine, thus triggering autoimmune diabetes. An important implication of our findings is that restoration of a healthy gut barrier through microbiota and diet modulation in diabetes-prone individuals could reduce intestinal activation of islet-reactive T cells and prevent T1D occurrence.</jats:p
