3,839 research outputs found

    Recovery from acidification of lochs in Galloway, south-west Scotland, UK: 1979-1998

    No full text
    International audienceThe Galloway region of south-west Scotland has historically been subject to long-term deposition of acidic precipitation which has resulted in acidification of soils and surface waters and subsequent damage to aquatic ecology. Since the end of the 1970s, however, acidic deposition has decreased substantially. The general pattern is for a rapid decline in non-marine sulphate in rainwater over the period 1978-1988 followed by stable concentrations to the mid-1990s. Concentrations of nitrate and ammonium in deposition have remained constant between 1980 and 1998. Seven water quality surveys of 48 lochs in the Galloway region have been conducted between 1979 and 1998. During the first 10 years, from 1979, there was a major decline in regional sulphate concentrations in the lochs, which was expected to have produced a decline in base cations and an increase in the acid neutralising capacity. But sea-salt levels (as indicated by chloride concentrations) were approximately 25% higher in 1988 than in 1979 and thus short-term acidification due to sea-salts offset much of the long-term recovery trend expected in the lochs. During the next 10 years, however, the chloride concentrations returned to 1979 levels and the lochs showed large increases in acid neutralising capacity despite little change in sulphate concentrations. From the observed decline in sulphate deposition and concentrations of sulphate in the lochs, it appears that approximately 75% of the possible improvement in acid neutralising capacity has already occurred over the 20-year period (1979-1998). The role of acid deposition as a driving factor for change in water chemistry in the Galloway lochs is confounded by concurrent changes in other driving variables, most notably, factors related to episodic and year-to-year variations in climate. In addition to inputs of sea-salts, climate probably also influences other chemical signals such as peaks in regional nitrate concentrations and the sharp increase in dissolved organic carbon during the 1990s. Keywords: acidification, recovery, Galloway, sulphur, nitroge

    Studying Atomic Physics Using the Nighttime Atmosphere as a Laboratory

    Get PDF
    A summary of our recent work using terrestrial nightglow spectra, obtained from astronomical instrumentation, to directly measure, or evaluate theoretical values for fundamental parameters of astrophysically important atomic lines

    Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model

    No full text
    International audienceThe MAGIC model of the responses of catchments to acidic deposition has been applied and tested extensively over a 15 year period at many sites and in many regions around the world. Overall, the model has proven to be robust, reliable and useful in a variety of scientific and managerial activities. Over the years, several refinements and additions to MAGIC have been proposed and/or implemented for particular applications. These adjustments to the model structure have all been included in a new version of the model (MAGIC7). The log aluminium ? pH relationship now does not have to be fixed to aluminium trihydroxide solubility. Buffering by organic acids using a triprotic analog is now included. Dynamics of nitrogen retention and loss in catchments can now be linked to soil nitrogen and carbon pools. Simulation of short-term episodic response by mixing fractions of different water types is also possible. This paper presents a review of the conceptual structure of MAGIC7 relating to long-term simulation of acidification and recovery, describes the conceptual basis of the new nitrogen dynamics and provides a comprehensive update of the equations, variables, parameters and inputs for the model. Keywords: process-based model, acid deposition, recover

    Assessing emission reduction targets with dynamic models: deriving target load functions for use in integrated assessment

    No full text
    International audienceInternational agreements to reduce the emission of acidifying sulphur (S) and nitrogen (N) compounds have been negotiated on the basis of an understanding of the link between acidification related changes in soil and surface water chemistry and terrestrial and aquatic biota. The quantification of this link is incorporated within the concept of critical loads. Critical loads are calculated using steady state models and give no indication of the time within which acidified ecosystems might be expected to recover. Dynamic models provide an opportunity to assess the timescale of recovery and can go further to provide outputs which can be used in future emission reduction strategies. In this respect, the Target Load Function (TLF) is proposed as a means of assessing the deposition load necessary to restore a damaged ecosystem to some pre-defined acceptable state by a certain time in the future. A target load represents the deposition of S and N in a defined year (implementation year) for which the critical limit is achieved in a defined time (target year). A TLF is constructed using an appropriate dynamic model to determine the value of a chemical criterion at a given point in time given a temporal pattern of S and N deposition loads. A TLF requires information regarding: (i) the chemical criterion required to protect the chosen biological receptor (i.e. the critical limit); (ii) the year in which the critical limit is required to be achieved; and (iii) time pattern of future emission reductions. In addition, the TLF can be assessed for whole regions to incorporate the effect of these three essentially ecosystem management decisions. Keywords: emission reduction, critical load, target load, dynamic model, recovery tim

    Radiative association and inverse predissociation of oxygen atoms

    Full text link
    The formation of \mbox{O}_2 by radiative association and by inverse predissociation of ground state oxygen atoms is studied using quantum-mechanical methods. Cross sections, emission spectra, and rate coefficients are presented and compared with prior experimental and theoretical results. At temperatures below 1000~K radiative association occurs by approach along the 13Πu1\,{}^3\Pi_u state of \mbox{O}_2 and above 1000~K inverse predissociation through the \mbox{B}\,{}^3\Sigma_u^- state is the dominant mechanism. This conclusion is supported by a quantitative comparison between the calculations and data obtained from hot oxygen plasma spectroscopy.Comment: submitted to Phys. Rev. A (Sept. 7., 1994), 19 pages, 4 figures, latex (revtex3.0 and epsf.sty

    A modelling assessment of acidification and recovery of European surface waters

    Get PDF
    The increase in emission of sulphur oxides and nitrogen (both oxidised and reduced forms) since the mid-1800s caused a severe decline in pH and ANC in acid-sensitive surface waters across Europe. Since c.1980, these emissions have declined and trends towards recovery from acidification have been widely observed in time-series of water chemistry data. In this paper, the MAGIC model was applied to 10 regions (the SMART model to one) in Europe to address the question of future recovery under the most recently agreed emission protocols (the 1999 Gothenburg Protocol). The models were calibrated using best available data and driven using S and N deposition sequences for Europe derived from EMEP data. The wide extent and the severity of water acidification in 1980 in many regions were illustrated by model simulations which showed significant deterioration in ANC away from the pre-acidification conditions. The simulations also captured the recovery to 2000 in response to the existing emission reductions. Predictions to 2016 indicated further significant recovery towards pre-acidification chemistry in all regions except Central England (S Pennines), S Alps, S Norway and S Sweden. In these areas it is clear that further emission reductions will be required and that the recovery of surface waters will take several decades as soils slowly replenish their depleted base cation pools. Chemical recovery may not, however, ensure biological recovery and further reductions may also be required to enable these waters to achieve the "good ecological status" as required by the EU Water Framework Directive

    A cognitive forcing tool to mitigate cognitive bias:A randomised control trial

    Get PDF
    Abstract Background Cognitive bias is an important source of diagnostic error yet is a challenging area to understand and teach. Our aim was to determine whether a cognitive forcing tool can reduce the rates of error in clinical decision making. A secondary objective was to understand the process by which this effect might occur. Methods We hypothesised that using a cognitive forcing tool would reduce diagnostic error rates. To test this hypothesis, a novel online case-based approach was used to conduct a single blinded randomized clinical trial conducted from January 2017 to September 2018. In addition, a qualitative series of “think aloud” interviews were conducted with 20 doctors from a UK teaching hospital in 2018. The primary outcome was the diagnostic error rate when solving bias inducing clinical vignettes. A volunteer sample of medical professionals from across the UK, Republic of Ireland and North America. They ranged in seniority from medical student to Attending Physician. Results Seventy six participants were included in the study. The data showed doctors of all grades routinely made errors related to cognitive bias. There was no difference in error rates between groups (mean 2.8 cases correct in intervention vs 3.1 in control group, 95% CI -0.94 – 0.45 P = 0.49). The qualitative protocol revealed that the cognitive forcing strategy was well received and a produced a subjectively positive impact on doctors’ accuracy and thoughtfulness in clinical cases. Conclusions The quantitative data failed to show an improvement in accuracy despite a positive qualitative experience. There is insufficient evidence to recommend this tool in clinical practice, however the qualitative data suggests such an approach has some merit and face validity to users

    Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995

    Get PDF
    In 1999 we used the MAGIC (Model of Acidification of Groundwater In Catchments) model to project acidification of acid-sensitive European surface waters in the year 2010, given implementation of the Gothenburg Protocol to the Convention on Long-Range Transboundary Air Pollution (LRTAP). A total of 202 sites in 10 regions in Europe were studied. These forecasts can now be compared with measurements for the year 2010, to give a “ground truth” evaluation of the model. The prerequisite for this test is that the actual sulfur and nitrogen deposition decreased from 1995 to 2010 by the same amount as that used to drive the model forecasts; this was largely the case for sulfur, but less so for nitrogen, and the simulated surface water [NO3–] reflected this difference. For most of the sites, predicted surface water recovery from acidification for the year 2010 is very close to the actual recovery observed from measured data, as recovery is predominantly driven by reductions in sulfur deposition. Overall these results show that MAGIC successfully predicts future water chemistry given known changes in acid deposition

    Facilitating the Voice of Adolescents in Hospitals Through Art: A Case Report

    Full text link
    Adolescence can be a challenging time, but even more so when diagnosed with a serious or chronic illness. Starlight Children's Foundation established the Livewire program after recognizing the unique needs of adolescents in hospitals. This article describes our experience of implementing an art-based project within the Livewire program, designed to facilitate the voice of adolescents with a serious or chronic illness and their siblings. We invited young people across Australia to contribute their artwork which would be used as the design for a deck of playing cards. The final 54 cards were a creative reflection of the unique interests, personalities, and experiences of 45 young people. In this article, we also share the experiences of two young people who contributed to this project. We conclude with our learnings in delivering an art-based project for young people that is not presented directly as “therapy”
    corecore